清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ConvMixer-based encoder and classification-based decoder architecture for breast lesion segmentation in ultrasound images

计算机科学 分割 编码器 人工智能 雅卡索引 像素 模式识别(心理学) 背景(考古学) 图像分割 乳腺超声检查 计算机视觉 乳腺癌 乳腺摄影术 医学 癌症 古生物学 生物 操作系统 内科学
作者
Hüseyin Üzen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:89: 105707-105707 被引量:2
标识
DOI:10.1016/j.bspc.2023.105707
摘要

Automatic breast lesion segmentation in ultrasound images is an important research topic, as breast cancer is one of the most common and dangerous cancers. However, lesion segmentation is a difficult task due to the challenges encountered in ultrasound images. In this study, a new encoder-decoder network based on ConvMixer is designed for breast lesion segmentation in ultrasound images. This model, called the ConvMixer-based Encoder-Classification-Based Decoder (CE-CD), divides the pixel-level segmentation task into image-level classification and pixel-level detection, effectively combining them. ConvMixer and DenseNet121 are used in the encoder. While spatial and semantic details are obtained with DenseNet121, long-range-context details are obtained with ConvMixer. Then, these features are combined and transferred to the decoder. In addition, the decoder consists of a classification network and a detection network. The detection network obtains the lesion detection score at the pixel level, while the classification network obtains the lesion classification score at the image level. In the last section of CE-CD, the detected lesion class is determined using the classification output with the result generation algorithm. The BUSI dataset was used to analyze the performance of the CE-CD. As a result of experimental studies, the proposed model provided a superior performance than the state-of-the-art models with a Jaccard score of 69.23% and a Dice score of 80.23%. Furthermore, using ConvMixer together with DenseNet121 in the analyses performed for CE-CD effectively increased the success. On the other hand, although the mutual exclusion problem was encountered, the proposed decoder was found to be effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
42秒前
lalala发布了新的文献求助10
1分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
2分钟前
Outsider完成签到,获得积分10
2分钟前
3分钟前
土豪的灵竹完成签到 ,获得积分10
3分钟前
3分钟前
喜悦的飞飞完成签到,获得积分10
3分钟前
lalala发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
酷波er应助Kevin采纳,获得10
4分钟前
4分钟前
4分钟前
lalala发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
Kevin发布了新的文献求助10
6分钟前
lilili完成签到,获得积分10
6分钟前
puzhongjiMiQ发布了新的文献求助10
6分钟前
puzhongjiMiQ完成签到,获得积分10
6分钟前
方白秋完成签到,获得积分10
6分钟前
7分钟前
Kevin完成签到,获得积分10
7分钟前
lalala发布了新的文献求助10
7分钟前
小霞完成签到 ,获得积分10
7分钟前
7分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得30
8分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171584
求助须知:如何正确求助?哪些是违规求助? 2822457
关于积分的说明 7939252
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322962
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647