ConvMixer-based encoder and classification-based decoder architecture for breast lesion segmentation in ultrasound images

计算机科学 分割 编码器 人工智能 雅卡索引 像素 模式识别(心理学) 背景(考古学) 图像分割 乳腺超声检查 计算机视觉 乳腺癌 乳腺摄影术 医学 癌症 古生物学 生物 操作系统 内科学
作者
Hüseyin Üzen
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105707-105707 被引量:2
标识
DOI:10.1016/j.bspc.2023.105707
摘要

Automatic breast lesion segmentation in ultrasound images is an important research topic, as breast cancer is one of the most common and dangerous cancers. However, lesion segmentation is a difficult task due to the challenges encountered in ultrasound images. In this study, a new encoder-decoder network based on ConvMixer is designed for breast lesion segmentation in ultrasound images. This model, called the ConvMixer-based Encoder-Classification-Based Decoder (CE-CD), divides the pixel-level segmentation task into image-level classification and pixel-level detection, effectively combining them. ConvMixer and DenseNet121 are used in the encoder. While spatial and semantic details are obtained with DenseNet121, long-range-context details are obtained with ConvMixer. Then, these features are combined and transferred to the decoder. In addition, the decoder consists of a classification network and a detection network. The detection network obtains the lesion detection score at the pixel level, while the classification network obtains the lesion classification score at the image level. In the last section of CE-CD, the detected lesion class is determined using the classification output with the result generation algorithm. The BUSI dataset was used to analyze the performance of the CE-CD. As a result of experimental studies, the proposed model provided a superior performance than the state-of-the-art models with a Jaccard score of 69.23% and a Dice score of 80.23%. Furthermore, using ConvMixer together with DenseNet121 in the analyses performed for CE-CD effectively increased the success. On the other hand, although the mutual exclusion problem was encountered, the proposed decoder was found to be effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
Neo发布了新的文献求助10
2秒前
斯文败类应助yzp111采纳,获得10
2秒前
祥小哥完成签到,获得积分10
2秒前
Hello应助摔碎玻璃瓶采纳,获得20
3秒前
3秒前
17861433618关注了科研通微信公众号
3秒前
Jasper应助yldw采纳,获得10
3秒前
4秒前
九块九拼好论文完成签到,获得积分10
4秒前
轻松砖头发布了新的文献求助10
4秒前
马不停蹄发布了新的文献求助10
4秒前
5秒前
6秒前
陶征应助健康的往事采纳,获得10
6秒前
6秒前
努努发布了新的文献求助20
7秒前
我爱Chem发布了新的文献求助10
7秒前
wyz完成签到,获得积分10
7秒前
无奈行恶应助wangqing采纳,获得10
9秒前
fanny发布了新的文献求助10
9秒前
小二郎应助东哥采纳,获得10
9秒前
小马甲应助烂漫的白昼采纳,获得10
10秒前
178181发布了新的文献求助20
10秒前
SHAO应助momo采纳,获得10
10秒前
10秒前
10秒前
11秒前
猪猪hero发布了新的文献求助10
12秒前
12秒前
可爱紫文完成签到 ,获得积分10
12秒前
wanci应助小小虾采纳,获得10
13秒前
zzzzzz发布了新的文献求助10
14秒前
Yyan完成签到,获得积分10
14秒前
14秒前
14秒前
wanci应助再睡十分钟采纳,获得10
15秒前
LOVE0077完成签到,获得积分10
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092