ConvMixer-based encoder and classification-based decoder architecture for breast lesion segmentation in ultrasound images

计算机科学 分割 编码器 人工智能 雅卡索引 像素 模式识别(心理学) 背景(考古学) 图像分割 乳腺超声检查 计算机视觉 乳腺癌 乳腺摄影术 医学 癌症 古生物学 生物 操作系统 内科学
作者
Hüseyin Üzen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:89: 105707-105707 被引量:2
标识
DOI:10.1016/j.bspc.2023.105707
摘要

Automatic breast lesion segmentation in ultrasound images is an important research topic, as breast cancer is one of the most common and dangerous cancers. However, lesion segmentation is a difficult task due to the challenges encountered in ultrasound images. In this study, a new encoder-decoder network based on ConvMixer is designed for breast lesion segmentation in ultrasound images. This model, called the ConvMixer-based Encoder-Classification-Based Decoder (CE-CD), divides the pixel-level segmentation task into image-level classification and pixel-level detection, effectively combining them. ConvMixer and DenseNet121 are used in the encoder. While spatial and semantic details are obtained with DenseNet121, long-range-context details are obtained with ConvMixer. Then, these features are combined and transferred to the decoder. In addition, the decoder consists of a classification network and a detection network. The detection network obtains the lesion detection score at the pixel level, while the classification network obtains the lesion classification score at the image level. In the last section of CE-CD, the detected lesion class is determined using the classification output with the result generation algorithm. The BUSI dataset was used to analyze the performance of the CE-CD. As a result of experimental studies, the proposed model provided a superior performance than the state-of-the-art models with a Jaccard score of 69.23% and a Dice score of 80.23%. Furthermore, using ConvMixer together with DenseNet121 in the analyses performed for CE-CD effectively increased the success. On the other hand, although the mutual exclusion problem was encountered, the proposed decoder was found to be effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
写论文的狗完成签到,获得积分10
4秒前
wushuang完成签到 ,获得积分10
5秒前
小铃铛发布了新的文献求助10
5秒前
无极微光应助阳炎采纳,获得20
5秒前
之之完成签到,获得积分10
5秒前
多看论文多读书关注了科研通微信公众号
6秒前
7秒前
7秒前
8秒前
Kk完成签到,获得积分10
8秒前
落寞傲南完成签到,获得积分10
8秒前
wanci应助曲书文采纳,获得10
9秒前
英俊的尔容完成签到 ,获得积分10
9秒前
高级牛马完成签到 ,获得积分10
10秒前
11秒前
11秒前
FashionBoy应助Viyo采纳,获得10
11秒前
赵晨雪完成签到 ,获得积分10
11秒前
安全123完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
coco完成签到,获得积分10
13秒前
美满的鲂发布了新的文献求助10
14秒前
15秒前
小章呀发布了新的文献求助10
15秒前
Hello应助安全123采纳,获得10
15秒前
CQ发布了新的文献求助10
16秒前
Mado发布了新的文献求助10
16秒前
妍宝贝完成签到 ,获得积分10
17秒前
自觉以冬完成签到 ,获得积分10
17秒前
高大的羽毛完成签到,获得积分0
18秒前
苦酷发布了新的文献求助10
20秒前
22秒前
22秒前
情怀应助xy采纳,获得10
23秒前
知性的寻芹完成签到,获得积分10
26秒前
哭泣的宛丝完成签到,获得积分10
27秒前
dddd完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789740
求助须知:如何正确求助?哪些是违规求助? 5722835
关于积分的说明 15475357
捐赠科研通 4917509
什么是DOI,文献DOI怎么找? 2647048
邀请新用户注册赠送积分活动 1594699
关于科研通互助平台的介绍 1549180