Anti-scattering medium computational ghost imaging with modified Hadamard patterns

哈达玛变换 计算机科学 降噪 光学 平滑的 散射 高斯噪声 噪音(视频) 滤波器(信号处理) 图像复原 计算机视觉 算法 高斯分布 人工智能 图像处理 图像(数学) 物理 数学 数学分析 量子力学
作者
Lixing Lin,Jie Cao,Qun Hao
出处
期刊:Optics Communications [Elsevier]
卷期号:552: 130039-130039
标识
DOI:10.1016/j.optcom.2023.130039
摘要

Illumination patterns of computational ghost imaging (CGI) systems suffer from reduced contrast when passing through a scattering medium, which causes the effective information in the reconstruction result to be drowned out by noise. A two-dimensional (2D) Gaussian filter performs linear smoothing operation on the whole image for image denoising. It can be combined with linear reconstruction algorithms of CGI to obtain the noise-reduced results directly, without post-processing. However, it results in blurred image edges while performing denoising and, in addition, a suitable standard deviation is difficult to choose in advance, especially in an unknown scattering environment. In this work, we subtly exploit the characteristics of CGI to solve these two problems very well. A kind of modified Hadamard pattern based on the 2D Gaussian filter and the differential operation features of Hadamard-based CGI is developed. We analyze and demonstrate experimentally that using Hadamard patterns for illumination but using our developed modified Hadamard patterns for reconstruction (MHCGI) can enhance the robustness of CGI against turbid scattering medium. Our method not only helps directly obtain noise-reduced results without blurred edges but also requires only an approximate standard deviation, i.e., it can be set in advance. The experimental results on transmitted and reflected targets demonstrate the feasibility of our method. Our method helps to promote the practical application of CGI in the scattering environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枕上诗书应助倒计时采纳,获得30
2秒前
科研通AI6应助LQ采纳,获得30
3秒前
能干砖家完成签到,获得积分10
3秒前
zyy完成签到,获得积分10
3秒前
YYY完成签到,获得积分10
3秒前
Peter完成签到 ,获得积分10
4秒前
Maestro_S应助科研通管家采纳,获得30
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
5秒前
ccm应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
mmichaell应助科研通管家采纳,获得10
6秒前
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
MMP应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
布丁应助李雪采纳,获得50
6秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
旺通通应助科研通管家采纳,获得10
7秒前
shhoing应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
7秒前
俭朴寒天发布了新的文献求助10
10秒前
Cruiise完成签到,获得积分10
10秒前
哈哈2022完成签到,获得积分10
10秒前
zr发布了新的文献求助10
11秒前
天真的路灯完成签到 ,获得积分10
12秒前
迷人雪一完成签到,获得积分10
12秒前
讨厌下雨天完成签到 ,获得积分10
15秒前
16秒前
16秒前
Sherry完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419