材料科学
石墨烯
深共晶溶剂
共晶体系
润滑油
润滑
化学工程
氧化物
吸附
分散稳定性
色散(光学)
插层(化学)
乙二醇
复合材料
无机化学
纳米技术
有机化学
冶金
微观结构
化学
聚合物
光学
工程类
物理
作者
Xiaoqiang Fan,Zhuang Zhao,Chongde Li,Xinrui Li,Yushan He,Minhao Zhu
出处
期刊:Carbon
[Elsevier]
日期:2023-10-15
卷期号:216: 118508-118508
被引量:21
标识
DOI:10.1016/j.carbon.2023.118508
摘要
The high-performance lubrication effect of graphene materials is mainly due to the formation of friction film. However, the poor compatibility and interfacial adsorption of graphene oxide restrict the density of the friction film, thus losing the expected lubrication performance. Herein, the novel oil-based lubricant additives were configured by deep eutectic solvents (made of choline chloride and ethylene glycol) intercalation graphene oxide (DES-GOs). The strong hydrogen bonding between deep eutectic solvents (DESs) and graphene oxide nanosheets was detected. Precipitate experiment and UV–vis absorption spectra demonstrated high dispersion stability of DES-GOs1:3 in PEG 200 (no precipitate after 120 days). Significantly, DES-GOs1:3 with excellent electrical conductivity possessed the outstanding lubrication performance, whose average friction coefficient and wear volume decrease by 38.3% and 91.2%, compared with PEG 200, respectively. The proposed reasons to this enhanced performance were the synergistic effect of high dispersion stability, formation of the dense tribo-films and low inter-layers shear effect. Considering the diversity of DESs components and two-dimensional materials, the novel DESs functionalized two-dimensional materials possess great potential in industrial application as lubricant additives for different working conditions and base oils.
科研通智能强力驱动
Strongly Powered by AbleSci AI