Immune infiltration and clinical significance analyses of the cancer‐associated fibroblast‐related signature in skin cutaneous melanoma

基因签名 肿瘤微环境 黑色素瘤 转录组 肿瘤科 免疫系统 皮肤癌 医学 免疫抑制 基因表达谱 内科学 癌症 癌症研究 生物 基因表达 基因 免疫学 生物化学
作者
Xintao Cen,Mengna Li,Amin Yao,Yue Zheng,Lai Wei
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:3
标识
DOI:10.1002/jgm.3614
摘要

Abstract Background Skin cutaneous melanoma (SKCM) is one of the most aggressive cancers with high mortality rates. Cancer‐associated fibroblasts (CAFs) play essential roles in tumor growth, metastasis and the establishment of a pro‐tumor microenvironment. This study aimed to establish a CAF‐related signature for providing a new perspective for indicating prognosis and guiding therapeutic regimens of SKCM patients. Methods In this study, the CAF‐related genes were screened out based on melanoma‐associated fibroblast markers identified from single‐cell transcriptome analysis in the Gene Expression Omnibus (GEO) database and a CAF‐related module identified from weighted gene co‐expression analysis using The Cancer Genome Atlas (TCGA) dataset. We extracted these gene expression data of SKCM samples from TCGA and constructed a prognostic CAF‐related signature. The prediction abilities of the signature for survival prognosis, tumor immune landscape and responses to chemo‐/immunotherapies were evaluated in the TCGA‐SKCM cohort. Results We suggested that CAFs were significantly involved in the clinical outcomes of SKCM. A 10‐gene CAF‐related model was constructed, and the high‐CAF risk group exhibited immunosuppressive features and worse prognosis. Patients with high CAF score were more likely to not respond to immune checkpoint inhibitors but were more sensitive to some chemotherapeutic agents, suggesting a potential approach of chemotherapy/anti‐CAF combination treatment to improve the SKCM patient response rate of current immunotherapies. Conclusions The CAF‐related risk score could serve as a robust prognostic indicator and personal assessment of this score could uncover the degree of immunosuppression and provide treatment strategies to improve outcomes in clinical decision‐making in SKCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lu发布了新的文献求助10
刚刚
时567完成签到,获得积分10
1秒前
shuke完成签到,获得积分10
3秒前
ma发布了新的文献求助10
4秒前
4秒前
传奇3应助乐观的中心采纳,获得10
5秒前
5秒前
摩登灰太狼完成签到,获得积分10
6秒前
9秒前
9秒前
Devin发布了新的文献求助10
12秒前
xx完成签到,获得积分10
14秒前
meihui完成签到 ,获得积分10
15秒前
15秒前
叶十七完成签到,获得积分10
15秒前
17秒前
galaxy发布了新的文献求助30
18秒前
迟大猫应助獭兔采纳,获得10
19秒前
平常兰发布了新的文献求助10
19秒前
jie发布了新的文献求助20
20秒前
幸福的向彤完成签到,获得积分10
22秒前
22秒前
老干部发布了新的文献求助10
23秒前
24秒前
26秒前
26秒前
老干部完成签到,获得积分10
26秒前
文艺的从波完成签到,获得积分10
27秒前
samera发布了新的文献求助10
28秒前
小糖完成签到 ,获得积分10
28秒前
29秒前
JamesPei应助小西米采纳,获得10
30秒前
瓦尔迪完成签到,获得积分10
30秒前
ying完成签到,获得积分10
30秒前
LHZ完成签到,获得积分10
30秒前
31秒前
学术渣渣发布了新的文献求助30
32秒前
32秒前
tunerling完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730648
求助须知:如何正确求助?哪些是违规求助? 3275292
关于积分的说明 9991544
捐赠科研通 2990897
什么是DOI,文献DOI怎么找? 1641265
邀请新用户注册赠送积分活动 779676
科研通“疑难数据库(出版商)”最低求助积分说明 748331