已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using 18F-FDG PET

医学 卷积神经网络 淋巴结 试验装置 肺癌 正电子发射断层摄影术 转移 放射科 阶段(地层学) 人工智能 核医学 癌症 计算机科学 肿瘤科 病理 内科学 古生物学 生物
作者
Eitaro Kidera,Sho Koyasu,Kenji Hirata,Masatsugu Hamaji,Ryusuke Nakamoto,Yuji Nakamoto
出处
期刊:Annals of Nuclear Medicine [Springer Nature]
卷期号:38 (1): 71-80 被引量:1
标识
DOI:10.1007/s12149-023-01866-5
摘要

To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
赘婿应助独特的咩咩采纳,获得10
7秒前
7秒前
JJY丶L发布了新的文献求助30
8秒前
9秒前
10秒前
英姑应助柔弱蜜粉采纳,获得10
11秒前
卡卡发布了新的文献求助10
13秒前
15秒前
16秒前
111完成签到 ,获得积分10
17秒前
小洁完成签到 ,获得积分10
21秒前
22秒前
斯文败类应助lanrete采纳,获得10
24秒前
25秒前
28秒前
小蘑菇应助薄荷味汽水采纳,获得10
29秒前
量子星尘发布了新的文献求助10
32秒前
Megan发布了新的文献求助10
34秒前
大模型应助decade采纳,获得10
36秒前
发文章发布了新的文献求助50
37秒前
科研通AI5应助薄荷味汽水采纳,获得10
41秒前
44秒前
45秒前
毛哥看文献完成签到 ,获得积分10
46秒前
伶俐的无血完成签到 ,获得积分10
46秒前
Zoeytam发布了新的文献求助10
47秒前
豌豆完成签到 ,获得积分10
48秒前
48秒前
52秒前
顺心乐曲发布了新的文献求助10
53秒前
55秒前
58秒前
Cosmosurfer完成签到,获得积分10
58秒前
58秒前
完美世界应助饶清萍采纳,获得10
59秒前
Zoeytam完成签到,获得积分10
59秒前
饱满的晓凡完成签到,获得积分10
1分钟前
pol发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610454
求助须知:如何正确求助?哪些是违规求助? 4016392
关于积分的说明 12435104
捐赠科研通 3697960
什么是DOI,文献DOI怎么找? 2039151
邀请新用户注册赠送积分活动 1072032
科研通“疑难数据库(出版商)”最低求助积分说明 955685