Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using 18F-FDG PET

医学 卷积神经网络 淋巴结 试验装置 肺癌 正电子发射断层摄影术 转移 放射科 阶段(地层学) 人工智能 核医学 癌症 计算机科学 肿瘤科 病理 内科学 古生物学 生物
作者
Eitaro Kidera,Sho Koyasu,Kenji Hirata,Masatsugu Hamaji,Ryusuke Nakamoto,Yuji Nakamoto
出处
期刊:Annals of Nuclear Medicine [Springer Nature]
卷期号:38 (1): 71-80 被引量:1
标识
DOI:10.1007/s12149-023-01866-5
摘要

To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Garfieldlilac完成签到,获得积分10
刚刚
刚刚
Pom完成签到,获得积分20
刚刚
任思懿完成签到,获得积分10
刚刚
1秒前
Wang完成签到 ,获得积分10
1秒前
SYLH应助科研小白采纳,获得10
1秒前
思源应助纯真的德地采纳,获得10
2秒前
爆米花应助xiaowang采纳,获得10
2秒前
支问凝完成签到,获得积分10
2秒前
深情傲柔发布了新的文献求助10
2秒前
3秒前
开朗安筠发布了新的文献求助10
3秒前
孤独的珩发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
深情安青应助fgjkl采纳,获得10
5秒前
安详世平发布了新的文献求助30
6秒前
Mss发布了新的文献求助10
6秒前
花玥鹿完成签到,获得积分10
6秒前
dannnnn发布了新的文献求助10
7秒前
xiaowang完成签到,获得积分10
8秒前
燚燚发布了新的文献求助10
9秒前
9秒前
颜好发布了新的文献求助10
10秒前
隐形曼青应助派大星采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
liyiying发布了新的文献求助10
11秒前
12秒前
张占发布了新的文献求助10
12秒前
研友_X894JZ完成签到 ,获得积分10
13秒前
大模型应助dannnnn采纳,获得10
13秒前
Jinna706完成签到,获得积分10
13秒前
13秒前
丁真爱上芙蓉王完成签到,获得积分20
14秒前
丘比特应助肥妹最励志采纳,获得10
14秒前
yyyrrr发布了新的文献求助10
14秒前
CipherSage应助脆皮小小酥采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609