Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using 18F-FDG PET

医学 卷积神经网络 淋巴结 试验装置 肺癌 正电子发射断层摄影术 转移 放射科 阶段(地层学) 人工智能 核医学 癌症 计算机科学 肿瘤科 病理 内科学 古生物学 生物
作者
Eitaro Kidera,Sho Koyasu,Kenji Hirata,Masatsugu Hamaji,Ryusuke Nakamoto,Yuji Nakamoto
出处
期刊:Annals of Nuclear Medicine [Springer Nature]
卷期号:38 (1): 71-80 被引量:1
标识
DOI:10.1007/s12149-023-01866-5
摘要

To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zy完成签到,获得积分10
3秒前
秋秋完成签到,获得积分10
4秒前
大头完成签到 ,获得积分10
8秒前
DrLin完成签到,获得积分10
9秒前
芙瑞完成签到 ,获得积分10
9秒前
9秒前
211完成签到 ,获得积分10
9秒前
呆萌寻琴完成签到,获得积分10
10秒前
荣念云发布了新的文献求助10
15秒前
17秒前
vlots应助科研通管家采纳,获得30
19秒前
19秒前
寻道图强应助科研通管家采纳,获得30
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
22秒前
默默发布了新的文献求助10
22秒前
WQY发布了新的文献求助10
23秒前
121发布了新的文献求助10
25秒前
大猫爬树完成签到,获得积分10
26秒前
可靠的冰烟完成签到,获得积分10
26秒前
Ruuo616完成签到 ,获得积分10
28秒前
科研通AI2S应助Ashley采纳,获得10
28秒前
genomed完成签到,获得积分0
28秒前
29秒前
细心的紫丝完成签到,获得积分10
33秒前
逃跑的想表白的你猜完成签到,获得积分10
33秒前
旧楹联y完成签到,获得积分20
36秒前
Hello应助adinike采纳,获得10
38秒前
40秒前
传奇3应助WQY采纳,获得10
40秒前
121完成签到,获得积分10
41秒前
42秒前
小吴完成签到,获得积分10
45秒前
Forest完成签到,获得积分10
46秒前
46秒前
HHHH完成签到,获得积分10
49秒前
49秒前
不知道完成签到,获得积分10
51秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810718
关于积分的说明 7889262
捐赠科研通 2469826
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012