Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using 18F-FDG PET

医学 卷积神经网络 淋巴结 试验装置 肺癌 正电子发射断层摄影术 转移 放射科 阶段(地层学) 人工智能 核医学 癌症 计算机科学 肿瘤科 病理 内科学 古生物学 生物
作者
Eitaro Kidera,Sho Koyasu,Kenji Hirata,Masatsugu Hamaji,Ryusuke Nakamoto,Yuji Nakamoto
出处
期刊:Annals of Nuclear Medicine [Springer Nature]
卷期号:38 (1): 71-80 被引量:1
标识
DOI:10.1007/s12149-023-01866-5
摘要

To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稚生w完成签到,获得积分10
刚刚
jayto发布了新的文献求助10
刚刚
silentdoubao发布了新的文献求助10
刚刚
刚刚
刘学完成签到,获得积分10
1秒前
1秒前
2秒前
Jared应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
jyy应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
yun完成签到,获得积分10
8秒前
zxx完成签到 ,获得积分0
9秒前
9秒前
11秒前
11秒前
12秒前
12秒前
李爱国应助舒适忆文采纳,获得10
12秒前
高贵绿真完成签到,获得积分10
12秒前
研友_VZG7GZ应助愤怒的梦曼采纳,获得10
13秒前
肉肉完成签到 ,获得积分10
13秒前
脑洞疼应助懿懿采纳,获得10
13秒前
wsy完成签到 ,获得积分10
14秒前
15秒前
15秒前
zhangyu完成签到,获得积分10
15秒前
15秒前
16秒前
Owen应助清脆的棒球采纳,获得10
16秒前
靓丽红牛发布了新的文献求助10
16秒前
jayto完成签到,获得积分10
18秒前
18秒前
缥缈天思发布了新的文献求助10
18秒前
Marcus完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660316
求助须知:如何正确求助?哪些是违规求助? 4832930
关于积分的说明 15090040
捐赠科研通 4818943
什么是DOI,文献DOI怎么找? 2578875
邀请新用户注册赠送积分活动 1533460
关于科研通互助平台的介绍 1492226