已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using 18F-FDG PET

医学 卷积神经网络 淋巴结 试验装置 肺癌 正电子发射断层摄影术 转移 放射科 阶段(地层学) 人工智能 核医学 癌症 计算机科学 肿瘤科 病理 内科学 古生物学 生物
作者
Eitaro Kidera,Sho Koyasu,Kenji Hirata,Masatsugu Hamaji,Ryusuke Nakamoto,Yuji Nakamoto
出处
期刊:Annals of Nuclear Medicine [Springer Nature]
卷期号:38 (1): 71-80 被引量:1
标识
DOI:10.1007/s12149-023-01866-5
摘要

To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鬲木发布了新的文献求助10
1秒前
3237924531完成签到,获得积分10
2秒前
英俊的铭应助鬲木采纳,获得10
3秒前
洁净如音给洁净如音的求助进行了留言
4秒前
fb12000发布了新的文献求助30
5秒前
5秒前
在水一方应助John采纳,获得30
6秒前
酷波er应助Pp采纳,获得10
7秒前
9秒前
9秒前
11秒前
hzhniubility完成签到,获得积分10
11秒前
骨科小李完成签到,获得积分10
14秒前
Wry发布了新的文献求助10
15秒前
sunny33发布了新的文献求助10
16秒前
左岸发布了新的文献求助10
16秒前
16秒前
ding应助沉静素采纳,获得10
18秒前
左岸完成签到,获得积分10
22秒前
23秒前
星小完成签到,获得积分10
23秒前
归尘应助贝壳采纳,获得10
25秒前
隐形曼青应助宋宋采纳,获得10
27秒前
27秒前
追寻完成签到,获得积分10
29秒前
30秒前
小雪发布了新的文献求助30
33秒前
qiandi完成签到 ,获得积分10
33秒前
上官若男应助Wry采纳,获得10
34秒前
35秒前
汉皇高祖发布了新的文献求助10
35秒前
36秒前
36秒前
顾矜应助科研通管家采纳,获得10
36秒前
Owen应助科研通管家采纳,获得10
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
爆米花应助科研通管家采纳,获得10
36秒前
嘿嘿应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602961
求助须知:如何正确求助?哪些是违规求助? 4688164
关于积分的说明 14852569
捐赠科研通 4686724
什么是DOI,文献DOI怎么找? 2540360
邀请新用户注册赠送积分活动 1506947
关于科研通互助平台的介绍 1471495