Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using 18F-FDG PET

医学 卷积神经网络 淋巴结 试验装置 肺癌 正电子发射断层摄影术 转移 放射科 阶段(地层学) 人工智能 核医学 癌症 计算机科学 肿瘤科 病理 内科学 古生物学 生物
作者
Eitaro Kidera,Sho Koyasu,Kenji Hirata,Masatsugu Hamaji,Ryusuke Nakamoto,Yuji Nakamoto
出处
期刊:Annals of Nuclear Medicine [Springer Nature]
卷期号:38 (1): 71-80 被引量:1
标识
DOI:10.1007/s12149-023-01866-5
摘要

To develop a convolutional neural network (CNN)-based program to analyze maximum intensity projection (MIP) images of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) positron emission tomography (PET) scans, aimed at predicting lymph node metastasis of non-small cell lung cancer (NSCLC), and to evaluate its effectiveness in providing diagnostic assistance to radiologists. We obtained PET images of NSCLC from public datasets, including those of 435 patients with available N-stage information, which were divided into a training set (n = 304) and a test set (n = 131). We generated 36 maximum intensity projection (MIP) images for each patient. A residual network (ResNet-50)-based CNN was trained using the MIP images of the training set to predict lymph node metastasis. Lymph node metastasis in the test set was predicted by the trained CNN as well as by seven radiologists twice: first without and second with CNN assistance. Diagnostic performance metrics, including accuracy and prediction error (the difference between the truth and the predictions), were calculated, and reading times were recorded. In the test set, 67 (51%) patients exhibited lymph node metastases and the CNN yielded 0.748 predictive accuracy. With the assistance of the CNN, the prediction error was significantly reduced for six of the seven radiologists although the accuracy did not change significantly. The prediction time was significantly reduced for five of the seven radiologists with the median reduction ratio 38.0%. The CNN-based program could potentially assist radiologists in predicting lymph node metastasis by increasing diagnostic confidence and reducing reading time without affecting diagnostic accuracy, at least in the limited situations using MIP images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝莓小蛋糕完成签到 ,获得积分10
1秒前
hei完成签到 ,获得积分10
1秒前
沉默冥幽发布了新的文献求助10
1秒前
舒适小笼包完成签到,获得积分10
1秒前
latiy完成签到 ,获得积分10
1秒前
wlscj应助西瓜采纳,获得20
1秒前
503503_发布了新的文献求助10
1秒前
safa完成签到,获得积分10
1秒前
蜜桃四季春完成签到,获得积分10
1秒前
任小波666发布了新的文献求助10
2秒前
Jingkai完成签到,获得积分10
2秒前
惜曦完成签到 ,获得积分10
2秒前
lxl完成签到,获得积分10
2秒前
漂亮天真完成签到,获得积分10
2秒前
2秒前
Anyemzl完成签到,获得积分10
2秒前
橘月发布了新的文献求助10
3秒前
瑶桑发布了新的文献求助10
3秒前
汉堡完成签到,获得积分10
3秒前
莲意神韵发布了新的文献求助10
3秒前
慢慢子发布了新的文献求助10
3秒前
天天快乐应助Serendipity采纳,获得30
3秒前
一朵小鲜花儿完成签到,获得积分10
4秒前
4秒前
行者无疆完成签到,获得积分10
4秒前
4秒前
YB完成签到,获得积分10
4秒前
TT完成签到,获得积分10
5秒前
li完成签到,获得积分10
5秒前
5秒前
5秒前
独特的凝云完成签到 ,获得积分10
6秒前
田様应助平淡的鹰采纳,获得10
7秒前
CYYDNDB完成签到 ,获得积分10
7秒前
威武荔枝完成签到,获得积分20
7秒前
冷艳的白莲完成签到,获得积分10
7秒前
7秒前
今天也不想搬砖完成签到,获得积分10
7秒前
zhongbo完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326088
求助须知:如何正确求助?哪些是违规求助? 4466348
关于积分的说明 13896318
捐赠科研通 4358726
什么是DOI,文献DOI怎么找? 2394224
邀请新用户注册赠送积分活动 1387670
关于科研通互助平台的介绍 1358627