Positive-Negative Receptive Field Reasoning for Omni-Supervised 3D Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 感受野 熵(时间箭头) 编码器 正规化(语言学) 特征学习 图像分割 组分(热力学) 特征(语言学) 计算机视觉 哲学 物理 操作系统 热力学 量子力学 语言学
作者
Xin Tan,Qihang Ma,Jingyu Gong,Jiachen Xu,Zhizhong Zhang,Haichuan Song,Yanyun Qu,Yuan Xie,Lizhuang Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 15328-15344 被引量:9
标识
DOI:10.1109/tpami.2023.3319470
摘要

Hidden features in the neural networks usually fail to learn informative representation for 3D segmentation as supervisions are only given on output prediction, while this can be solved by omni-scale supervision on intermediate layers. In this paper, we bring the first omni-scale supervision method to 3D segmentation via the proposed gradual Receptive Field Component Reasoning (RFCR), where target Receptive Field Component Codes (RFCCs) is designed to record categories within receptive fields for hidden units in the encoder. Then, target RFCCs will supervise the decoder to gradually infer the RFCCs in a coarse-to-fine categories reasoning manner, and finally obtain the semantic labels. To purchase more supervisions, we also propose an RFCR-NL model with complementary negative codes (i.e., Negative RFCCs, NRFCCs) with negative learning. Because many hidden features are inactive with tiny magnitudes and make minor contributions to RFCC prediction, we propose Feature Densification with a centrifugal potential to obtain more unambiguous features, and it is in effect equivalent to entropy regularization over features. More active features can unleash the potential of omni-supervision method. We embed our method into three prevailing backbones, which are significantly improved in all three datasets on both fully and weakly supervised segmentation tasks and achieve competitive performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
orixero应助薛之谦采纳,获得10
3秒前
jackmilton完成签到,获得积分10
3秒前
qweerrtt发布了新的文献求助30
4秒前
王一越关注了科研通微信公众号
4秒前
完美世界应助wild_yawp采纳,获得10
5秒前
莫离完成签到 ,获得积分10
5秒前
Lucas应助qiuli采纳,获得10
5秒前
5秒前
6秒前
赵焱峥发布了新的文献求助10
6秒前
6秒前
jackmilton发布了新的文献求助10
7秒前
斯文败类应助kurtlin采纳,获得10
7秒前
娴娴超爱笑完成签到,获得积分10
7秒前
心灵美的幻姬完成签到,获得积分10
8秒前
半柚应助苏苏采纳,获得10
8秒前
Lin应助依旧采纳,获得10
9秒前
涵泽发布了新的文献求助10
10秒前
coolkid完成签到 ,获得积分10
12秒前
12秒前
14秒前
大个应助chenying采纳,获得10
15秒前
16秒前
16秒前
Lian完成签到,获得积分10
17秒前
小陈发布了新的文献求助10
17秒前
17秒前
诶诶完成签到,获得积分10
18秒前
19秒前
20秒前
Lian发布了新的文献求助10
20秒前
alexlpb完成签到,获得积分0
20秒前
王一越发布了新的文献求助10
20秒前
WU完成签到,获得积分10
21秒前
chuckle发布了新的文献求助10
21秒前
Ekko完成签到,获得积分10
21秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843