计算机科学
分割
人工智能
模式识别(心理学)
感受野
熵(时间箭头)
编码器
正规化(语言学)
特征学习
图像分割
组分(热力学)
特征(语言学)
计算机视觉
哲学
物理
操作系统
热力学
量子力学
语言学
作者
Xin Tan,Qihang Ma,Jingyu Gong,Jiachen Xu,Zhizhong Zhang,Haichuan Song,Yanyun Qu,Yuan Xie,Lizhuang Ma
标识
DOI:10.1109/tpami.2023.3319470
摘要
Hidden features in the neural networks usually fail to learn informative representation for 3D segmentation as supervisions are only given on output prediction, while this can be solved by omni-scale supervision on intermediate layers. In this paper, we bring the first omni-scale supervision method to 3D segmentation via the proposed gradual Receptive Field Component Reasoning (RFCR), where target Receptive Field Component Codes (RFCCs) is designed to record categories within receptive fields for hidden units in the encoder. Then, target RFCCs will supervise the decoder to gradually infer the RFCCs in a coarse-to-fine categories reasoning manner, and finally obtain the semantic labels. To purchase more supervisions, we also propose an RFCR-NL model with complementary negative codes (i.e., Negative RFCCs, NRFCCs) with negative learning. Because many hidden features are inactive with tiny magnitudes and make minor contributions to RFCC prediction, we propose Feature Densification with a centrifugal potential to obtain more unambiguous features, and it is in effect equivalent to entropy regularization over features. More active features can unleash the potential of omni-supervision method. We embed our method into three prevailing backbones, which are significantly improved in all three datasets on both fully and weakly supervised segmentation tasks and achieve competitive performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI