Value of deep-learning image reconstruction at submillisievert CT for evaluation of the female pelvis

医学 图像质量 核医学 图像噪声 骨盆 迭代重建 放射科 人工智能 图像(数学) 计算机科学
作者
Jing Ren,Jichun Zhao,Yan Wang,Min Xu,Xiang-Yang Liu,Zhengyu Jin,Yulong He,Yan Li,Huadan Xue
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (11): e881-e888 被引量:1
标识
DOI:10.1016/j.crad.2023.07.016
摘要

To assess the value of deep-learning reconstruction (DLR) at submillisievert computed tomography (CT) for the evaluation of the female pelvis, with standard dose (SD) hybrid iterative reconstruction (IR) images as reference.The present study enrolled 50 female patients consecutively who underwent contrast-enhanced abdominopelvic CT for clinically indicated reasons. Submillisievert pelvic images were acquired using a noise index of 15 for low-dose (LD) scans, which were reconstructed with DLR (body and body sharp), hybrid-IR, and model-based IR (MBIR). Additionally, SD scans were reconstructed with a noise index of 7.5 using hybrid-IR. Radiation dose, quantitative image quality, overall image quality, image appearance using a five-point Likert scale (1-5: worst to best), and lesion evaluation in both SD and LD images were analysed and compared.The submillisievert pelvic CT examinations showed a 61.09 ± 4.13% reduction in the CT dose index volume compared to SD examinations. Among the LD images, DLR (body sharp) had the highest quantitative quality, followed by DLR (body), MBIR, and hybrid-IR. LD DLR (body) had overall image quality comparable to the reference (p=0.084) and favourable image appearance (p=0.209). In total, 40 pelvic lesions were detected in both SD and LD images. LD DLR (body and body sharp) exhibited similar diagnostic confidence (p=0.317 and 0.096) compared with SD hybrid-IR.DLR algorithms, providing comparable image quality and diagnostic confidence, are feasible in submillisievert abdominopelvic CT. The DLR (body) algorithm with favourable image appearance is recommended in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TNO完成签到,获得积分20
刚刚
野火197完成签到,获得积分10
1秒前
1秒前
hello完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
逢陈发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
3秒前
pkuwalker完成签到,获得积分10
3秒前
4秒前
Stella完成签到,获得积分10
4秒前
hello发布了新的文献求助10
4秒前
Ava应助独特元蝶采纳,获得10
5秒前
Yifan2024应助xinjie采纳,获得50
6秒前
隐形元龙完成签到,获得积分20
6秒前
6秒前
6秒前
pkuwalker发布了新的文献求助10
6秒前
希望天下0贩的0应助零蝉采纳,获得10
6秒前
星辰大海应助ohh采纳,获得10
7秒前
TNO发布了新的文献求助10
7秒前
8秒前
不将就发布了新的文献求助10
8秒前
可爱的函函应助辰希采纳,获得20
8秒前
dorr发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
千雪发布了新的文献求助10
9秒前
Ygy完成签到,获得积分10
9秒前
一个西瓜发布了新的文献求助30
9秒前
调研昵称发布了新的文献求助30
10秒前
弹棉花完成签到,获得积分10
10秒前
实验室的亡灵完成签到,获得积分10
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384