Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images

计算机科学 稳健性(进化) 目标检测 骨干网 人工智能 特征提取 深度学习 特征(语言学) 计算机视觉 模式识别(心理学) 计算机网络 语言学 生物化学 基因 哲学 化学
作者
Jiarui Zhang,Zhihua Chen,Guoxu Yan,Yi Wang,Bo Hu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (20): 4974-4974 被引量:10
标识
DOI:10.3390/rs15204974
摘要

In recent years, the realm of deep learning has witnessed significant advancements, particularly in object detection algorithms. However, the unique challenges posed by remote sensing images, such as complex backgrounds, diverse target sizes, dense target distribution, and overlapping or obscuring targets, demand specialized solutions. Addressing these challenges, we introduce a novel lightweight object detection algorithm based on Yolov5s to enhance detection performance while ensuring rapid processing and broad applicability. Our primary contributions include: firstly, we implemented a new Lightweight Asymmetric Detection Head (LADH-Head), replacing the original detection head in the Yolov5s model. Secondly, we introduce a new C3CA module, incorporating the Coordinate Attention mechanism, strengthening the network’s capability to extract precise location information. Thirdly, we proposed a new backbone network, replacing the C3 module in the Yolov5s backbone with a FasterConv module, enhancing the network’s feature extraction capabilities. Additionally, we introduced a Content-aware Feature Reassembly (content-aware reassembly of features) (CARAFE) module to reassemble semantic similar feature points effectively, enhancing the network’s detection capabilities and reducing the model parameters. Finally, we introduced a novel XIoU loss function, aiming to improve the model’s convergence speed and robustness during training. Experimental results on widely used remote sensing image datasets such as DIOR, DOTA, and SIMD demonstrate the effectiveness of our proposed model. Compared to the original Yolov5s algorithm, we achieved a mean average precision (mAP) increase of 3.3%, 6.7%, and 3.2%, respectively. These findings underscore the superior performance of our proposed model in remote sensing image object detection, offering an efficient, lightweight solution for remote sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
choichoi发布了新的文献求助10
刚刚
1秒前
yzx完成签到,获得积分20
1秒前
1秒前
宋金幽谷发布了新的文献求助20
2秒前
完美世界应助小马哥采纳,获得10
2秒前
孙萌萌发布了新的文献求助10
2秒前
2秒前
张红秋发布了新的文献求助10
3秒前
苹果诗珊发布了新的文献求助10
4秒前
4秒前
xue完成签到,获得积分10
4秒前
4秒前
Sally发布了新的文献求助10
6秒前
妩媚的幼丝完成签到,获得积分10
8秒前
赘婿应助lrelia02采纳,获得10
9秒前
10秒前
10秒前
10秒前
科研通AI2S应助xx采纳,获得10
10秒前
11秒前
11秒前
11秒前
左手树完成签到,获得积分10
11秒前
12秒前
12秒前
上官若男应助choichoi采纳,获得10
12秒前
彭于晏应助雪花采纳,获得10
13秒前
乐乐应助研友_8RyzBZ采纳,获得10
14秒前
russing完成签到 ,获得积分10
14秒前
爆米花应助xgs采纳,获得10
14秒前
亮亮完成签到 ,获得积分10
14秒前
科研通AI5应助yijun采纳,获得30
15秒前
15秒前
美女博士发布了新的文献求助10
15秒前
不是山顶完成签到,获得积分10
15秒前
17秒前
17秒前
王博士发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075105
求助须知:如何正确求助?哪些是违规求助? 4294947
关于积分的说明 13383012
捐赠科研通 4116702
什么是DOI,文献DOI怎么找? 2254423
邀请新用户注册赠送积分活动 1258996
关于科研通互助平台的介绍 1191861