Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images

计算机科学 稳健性(进化) 目标检测 骨干网 人工智能 特征提取 深度学习 特征(语言学) 计算机视觉 模式识别(心理学) 计算机网络 语言学 生物化学 基因 哲学 化学
作者
Jiarui Zhang,Zhihua Chen,Guoxu Yan,Yi Wang,Bo Hu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (20): 4974-4974 被引量:10
标识
DOI:10.3390/rs15204974
摘要

In recent years, the realm of deep learning has witnessed significant advancements, particularly in object detection algorithms. However, the unique challenges posed by remote sensing images, such as complex backgrounds, diverse target sizes, dense target distribution, and overlapping or obscuring targets, demand specialized solutions. Addressing these challenges, we introduce a novel lightweight object detection algorithm based on Yolov5s to enhance detection performance while ensuring rapid processing and broad applicability. Our primary contributions include: firstly, we implemented a new Lightweight Asymmetric Detection Head (LADH-Head), replacing the original detection head in the Yolov5s model. Secondly, we introduce a new C3CA module, incorporating the Coordinate Attention mechanism, strengthening the network’s capability to extract precise location information. Thirdly, we proposed a new backbone network, replacing the C3 module in the Yolov5s backbone with a FasterConv module, enhancing the network’s feature extraction capabilities. Additionally, we introduced a Content-aware Feature Reassembly (content-aware reassembly of features) (CARAFE) module to reassemble semantic similar feature points effectively, enhancing the network’s detection capabilities and reducing the model parameters. Finally, we introduced a novel XIoU loss function, aiming to improve the model’s convergence speed and robustness during training. Experimental results on widely used remote sensing image datasets such as DIOR, DOTA, and SIMD demonstrate the effectiveness of our proposed model. Compared to the original Yolov5s algorithm, we achieved a mean average precision (mAP) increase of 3.3%, 6.7%, and 3.2%, respectively. These findings underscore the superior performance of our proposed model in remote sensing image object detection, offering an efficient, lightweight solution for remote sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心寒松发布了新的文献求助10
刚刚
mehplamnha完成签到,获得积分10
刚刚
感到蔚蓝发布了新的文献求助10
刚刚
kean1943完成签到,获得积分10
1秒前
欢呼妙菱发布了新的文献求助10
1秒前
Aileen完成签到,获得积分10
2秒前
64658应助兴奋海雪采纳,获得10
2秒前
领导范儿应助兴奋海雪采纳,获得10
2秒前
XSB完成签到,获得积分10
2秒前
个性梦蕊发布了新的文献求助10
2秒前
2秒前
Rencal发布了新的文献求助10
2秒前
随便取完成签到 ,获得积分10
2秒前
balabala发布了新的文献求助10
2秒前
3秒前
果冻信号完成签到,获得积分10
4秒前
还好发布了新的文献求助10
4秒前
4秒前
starkisses完成签到,获得积分10
4秒前
pp完成签到,获得积分10
5秒前
zhuan完成签到,获得积分10
5秒前
一行白鹭完成签到,获得积分20
5秒前
从容的宝马完成签到,获得积分10
6秒前
6秒前
称心寒松完成签到,获得积分10
7秒前
高梦祥发布了新的文献求助50
8秒前
还好完成签到,获得积分10
8秒前
8秒前
8秒前
眨眼完成签到,获得积分10
9秒前
从此刻开始关注了科研通微信公众号
9秒前
南兮发布了新的文献求助10
9秒前
9秒前
淡然冬灵发布了新的文献求助10
10秒前
xxx完成签到,获得积分10
10秒前
kol发布了新的文献求助10
10秒前
万能图书馆应助超帅沂采纳,获得10
10秒前
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635