Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images

计算机科学 稳健性(进化) 目标检测 骨干网 人工智能 特征提取 深度学习 特征(语言学) 计算机视觉 模式识别(心理学) 计算机网络 生物化学 化学 语言学 哲学 基因
作者
Jiarui Zhang,Zhihua Chen,Guoxu Yan,Yi Wang,Bo Hu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (20): 4974-4974 被引量:10
标识
DOI:10.3390/rs15204974
摘要

In recent years, the realm of deep learning has witnessed significant advancements, particularly in object detection algorithms. However, the unique challenges posed by remote sensing images, such as complex backgrounds, diverse target sizes, dense target distribution, and overlapping or obscuring targets, demand specialized solutions. Addressing these challenges, we introduce a novel lightweight object detection algorithm based on Yolov5s to enhance detection performance while ensuring rapid processing and broad applicability. Our primary contributions include: firstly, we implemented a new Lightweight Asymmetric Detection Head (LADH-Head), replacing the original detection head in the Yolov5s model. Secondly, we introduce a new C3CA module, incorporating the Coordinate Attention mechanism, strengthening the network’s capability to extract precise location information. Thirdly, we proposed a new backbone network, replacing the C3 module in the Yolov5s backbone with a FasterConv module, enhancing the network’s feature extraction capabilities. Additionally, we introduced a Content-aware Feature Reassembly (content-aware reassembly of features) (CARAFE) module to reassemble semantic similar feature points effectively, enhancing the network’s detection capabilities and reducing the model parameters. Finally, we introduced a novel XIoU loss function, aiming to improve the model’s convergence speed and robustness during training. Experimental results on widely used remote sensing image datasets such as DIOR, DOTA, and SIMD demonstrate the effectiveness of our proposed model. Compared to the original Yolov5s algorithm, we achieved a mean average precision (mAP) increase of 3.3%, 6.7%, and 3.2%, respectively. These findings underscore the superior performance of our proposed model in remote sensing image object detection, offering an efficient, lightweight solution for remote sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助bb采纳,获得10
刚刚
1秒前
2秒前
大方的舞仙完成签到 ,获得积分10
2秒前
枳酒完成签到,获得积分10
2秒前
负责的流沙完成签到 ,获得积分10
2秒前
sdsd发布了新的文献求助10
2秒前
oneming发布了新的文献求助10
3秒前
可靠的纸飞机完成签到 ,获得积分10
3秒前
3秒前
顺利如冰完成签到,获得积分10
4秒前
15884134873完成签到,获得积分10
5秒前
Leslie发布了新的文献求助10
6秒前
小全完成签到,获得积分10
6秒前
医学生发布了新的文献求助10
6秒前
一只想做科研的狗完成签到,获得积分10
7秒前
orixero应助oneming采纳,获得10
9秒前
10秒前
10秒前
weijun完成签到,获得积分10
10秒前
科研通AI2S应助mingzhu采纳,获得10
12秒前
宇文老九完成签到,获得积分10
13秒前
xxww发布了新的文献求助10
13秒前
felix发布了新的文献求助10
14秒前
GX2023完成签到,获得积分10
17秒前
华仔应助Leslie采纳,获得10
17秒前
Elaine完成签到,获得积分10
17秒前
anxin发布了新的文献求助10
18秒前
20秒前
Arthur完成签到,获得积分10
20秒前
好好学习发布了新的文献求助10
20秒前
21秒前
wyj发布了新的文献求助10
23秒前
25秒前
虚心契发布了新的文献求助10
25秒前
26秒前
彭于晏应助anxin采纳,获得10
27秒前
qiuxin完成签到,获得积分10
27秒前
烦死了完成签到 ,获得积分0
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825