Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images

计算机科学 稳健性(进化) 目标检测 骨干网 人工智能 特征提取 深度学习 特征(语言学) 计算机视觉 模式识别(心理学) 计算机网络 语言学 生物化学 基因 哲学 化学
作者
Jiarui Zhang,Zhihua Chen,Guoxu Yan,Yi Wang,Bo Hu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (20): 4974-4974 被引量:69
标识
DOI:10.3390/rs15204974
摘要

In recent years, the realm of deep learning has witnessed significant advancements, particularly in object detection algorithms. However, the unique challenges posed by remote sensing images, such as complex backgrounds, diverse target sizes, dense target distribution, and overlapping or obscuring targets, demand specialized solutions. Addressing these challenges, we introduce a novel lightweight object detection algorithm based on Yolov5s to enhance detection performance while ensuring rapid processing and broad applicability. Our primary contributions include: firstly, we implemented a new Lightweight Asymmetric Detection Head (LADH-Head), replacing the original detection head in the Yolov5s model. Secondly, we introduce a new C3CA module, incorporating the Coordinate Attention mechanism, strengthening the network’s capability to extract precise location information. Thirdly, we proposed a new backbone network, replacing the C3 module in the Yolov5s backbone with a FasterConv module, enhancing the network’s feature extraction capabilities. Additionally, we introduced a Content-aware Feature Reassembly (content-aware reassembly of features) (CARAFE) module to reassemble semantic similar feature points effectively, enhancing the network’s detection capabilities and reducing the model parameters. Finally, we introduced a novel XIoU loss function, aiming to improve the model’s convergence speed and robustness during training. Experimental results on widely used remote sensing image datasets such as DIOR, DOTA, and SIMD demonstrate the effectiveness of our proposed model. Compared to the original Yolov5s algorithm, we achieved a mean average precision (mAP) increase of 3.3%, 6.7%, and 3.2%, respectively. These findings underscore the superior performance of our proposed model in remote sensing image object detection, offering an efficient, lightweight solution for remote sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GR发布了新的文献求助10
1秒前
1秒前
开朗的雁完成签到,获得积分10
1秒前
he发布了新的文献求助10
3秒前
毒蜜蜂乘风归来完成签到,获得积分10
3秒前
zhang_y2发布了新的文献求助10
3秒前
3秒前
小二郎应助DONG采纳,获得10
3秒前
AAA完成签到 ,获得积分10
4秒前
科研通AI6应助舒心语梦采纳,获得10
5秒前
5秒前
史萌发布了新的文献求助10
5秒前
优秀的书萱完成签到,获得积分20
5秒前
6秒前
lisier发布了新的文献求助30
7秒前
无限灵松发布了新的文献求助10
7秒前
lll完成签到,获得积分10
7秒前
9秒前
华仔应助摸鱼鱼采纳,获得10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Sun完成签到 ,获得积分10
11秒前
天天快乐应助HJJHJH采纳,获得10
11秒前
wzt发布了新的文献求助10
11秒前
11秒前
ding应助GR采纳,获得10
11秒前
临风听暮蝉完成签到,获得积分10
12秒前
共享精神应助zaq777brats采纳,获得10
13秒前
呀呀呀发布了新的文献求助10
13秒前
SAY发布了新的文献求助10
13秒前
ji关闭了ji文献求助
14秒前
一区种子选手完成签到,获得积分10
14秒前
jqs完成签到,获得积分10
14秒前
dhan发布了新的文献求助10
15秒前
15秒前
16秒前
陈功发布了新的文献求助10
16秒前
zkwgly完成签到,获得积分10
17秒前
深情安青应助uu采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154