A Study of Sentence-BERT Based Essay Off-topic Detection

判决 计算机科学 余弦相似度 相似性(几何) 人工智能 自然语言处理 分歧(语言学) 主题模型 模式识别(心理学) 语言学 图像(数学) 哲学
作者
Pengcheng Huang,Li Li,Chunyan Wu,Xiaoqian Zhang,Z. Y. Liu
标识
DOI:10.1145/3603781.3603871
摘要

Automated essay scoring systems are widely used in education, and essay off-topic detection is an integral part of this. Traditionally off-topic essay detection is based on text features represented as spatial vectors, however, this approach only addresses the structure of essay statements and requires the use of manual features. This paper proposed to use the Sentence-BERT model to detect off-topic essays, the method first obtains a large amount of high-quality data to build a corpus of off-topic essays, and two Siamese twin pre-trained models are used to embed sentences in the essay topic, and the body of the essay, generate semantically rich sentence vectors and then use cosine similarity to calculate the similarity between the topic and the body of the essay after averaging the pooled sentence vectors, and select the optimal threshold to determine off-topic essays through continuous training. The experimental results show that the proposed method improves the accuracy, recall, and F1 values by 9.5%, 11.2%, and 10.4% respectively over the C-BGRU (Convolutional-Bidirectional Gate Recurrent Unit) based Siamese twin network and also has an excellent performance in topics with different degrees of divergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
2秒前
fanzhimeng发布了新的文献求助10
2秒前
pwy发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
6秒前
7秒前
不要引力发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
10秒前
10秒前
yasan完成签到,获得积分10
10秒前
11秒前
silencewang发布了新的文献求助30
12秒前
6666驳回了嘿嘿应助
12秒前
bmhs2017应助kk采纳,获得10
13秒前
PT177245完成签到,获得积分10
13秒前
南鸢完成签到,获得积分10
13秒前
爆米花应助天真的宝马采纳,获得10
14秒前
啊啊啊啊啊啊完成签到,获得积分10
14秒前
15秒前
跳跃谷丝完成签到,获得积分10
15秒前
111完成签到 ,获得积分10
16秒前
16秒前
天天快乐应助rrjl采纳,获得10
16秒前
16秒前
不要引力完成签到,获得积分10
16秒前
wyz653完成签到,获得积分10
17秒前
20秒前
thousandlong发布了新的文献求助10
20秒前
20秒前
20秒前
芝士牛堡发布了新的文献求助10
21秒前
Fangdaidai完成签到,获得积分10
21秒前
22秒前
完美世界应助ZMY采纳,获得30
22秒前
orixero应助儒雅的书白采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400721
求助须知:如何正确求助?哪些是违规求助? 4519850
关于积分的说明 14077042
捐赠科研通 4432765
什么是DOI,文献DOI怎么找? 2433830
邀请新用户注册赠送积分活动 1426063
关于科研通互助平台的介绍 1404640