Hydrothermally treated peat/magnetite composites as highly efficient heterogeneous Fenton catalyst: Integrating multiple reaction mechanisms to enhance the catalytic reactivity for BPA removal

催化作用 反应性(心理学) 化学 氧化还原 磁铁矿 反应速率常数 X射线光电子能谱 羟基自由基 分解 键裂 无机化学 激进的 化学工程 动力学 有机化学 材料科学 医学 替代医学 物理 病理 量子力学 工程类 冶金
作者
Fangxin Deng,Qingze Chen,Yanping Zhu,Xiaoliang Liang,Runliang Zhu,Yunfei Xi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 144946-144946 被引量:8
标识
DOI:10.1016/j.cej.2023.144946
摘要

Although various strategies have been developed to boost the reactivity of heterogeneous Fenton catalysts, integrating multiple strategies in one catalyst to achieve high Fenton reactivity is still a challenge. To tackle this issue, the ball-milled peat and magnetite (Mag) composites were hydrothermally treated to synthesize novel heterogeneous Fenton catalyst (i.e., Mag-HTP) for bisphenol A (BPA) removal. The degradation efficiency of BPA (30 mg/L) by H2O2 (2 mmol/L) activated with 50 %Mag-HTP (0.2 g/L) was above 98% within 120 min at initial pH 3. The calculated degradation rate constant of Mag-HTP was 0.0873, which was 20.6 folds higher than that of Mag; moreover, it possessed high reactivity over a wide pH range (3–7) with low H2O2 dosage (0.5–2 mM), and high reaction stability (eight cycles with degradation rate over 95%). The multiple reactive mechanisms were validated: (1) NMR/XPS spectra, H2O2 decomposition, and HO production experiments proved the HTP as an electron donor could directly reduce Fe(III); (2) C-V curves proved the formed C-O-Fe bonds could lower the Fe(II)/Fe(III) redox potential; (3) Raman/EIS spectra, Tafel plot, and radical scavenging tests proved that HTP could serve as an electron shuttle for transferring electrons from H2O2 to Fe(III); (4) NMR spectra proved the formed C-O-C bonds on HTP could function as the dual-reaction-center in Fenton reaction. These multiple mechanisms collectively contributed to the high reactivity of Mag-HTP in the Fenton reaction. Therefore, Mag-HTP shows great potential for practical applications in wastewater treatment and soil remediation due to its cost-effectiveness, easy separation, and high Fenton reactivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruxing完成签到,获得积分10
刚刚
影像大侠完成签到,获得积分10
刚刚
852应助HYG采纳,获得30
1秒前
麦麦完成签到,获得积分10
1秒前
田様应助Isabel采纳,获得10
1秒前
gezid完成签到 ,获得积分10
1秒前
2秒前
2秒前
niu1发布了新的文献求助10
2秒前
Intro发布了新的文献求助10
2秒前
舒服的冬天完成签到,获得积分10
3秒前
Helical给Helical的求助进行了留言
3秒前
甜蜜晓绿完成签到,获得积分10
3秒前
4秒前
钱多多完成签到,获得积分10
4秒前
baekhyun完成签到,获得积分20
4秒前
4秒前
dpp发布了新的文献求助10
4秒前
今今完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
打打应助无情的白桃采纳,获得10
6秒前
香蕉觅云应助与光同晨采纳,获得10
7秒前
7秒前
小蘑菇应助clm采纳,获得10
7秒前
yhnsag完成签到,获得积分10
7秒前
Lin完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
Rain发布了新的文献求助10
9秒前
butiflow完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
务实的唇膏完成签到,获得积分10
10秒前
Will完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762