作者
Isabel E. Sánchez-Adriá,Gemma Sanmartín,José A. Prieto,Francisco Estruch,Estefanía Fortis,Francisca Rández‐Gil
摘要
Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.