码头
计算机科学
传感器融合
因子图
姿势
计算机视觉
实时计算
人工智能
移动机器人
图形
水下
对接(动物)
算法
机器人
工程类
理论计算机科学
海洋工程
解码方法
海洋学
地质学
医学
护理部
作者
Ma T,Shumin Chen,Ling Ruan,Yuanxin Xu
标识
DOI:10.1109/cacre58689.2023.10208719
摘要
The widespread use of Autonomous Underwater Vehicles (AUVs) highlights the need for autonomous docking, during which accurate pose estimation and navigation play a vital role. This paper proposes a multi-sensor fusion navigation framework based on the factor graph optimization method, integrating tightly-coupled visual information from the light array to provide high-accuracy and high-frequency relative pose estimations between AUV and its mobile dock at the terminal docking stage. Simulation results demonstrate that the proposed algorithm outperforms PnP and achieves smaller RMSE in relative attitude and translation estimations. Furthermore, the experiments show that the proposed algorithm provides smoother estimation results and that it has the potential to be deployed in embedded applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI