Predicting Module Performance from Cell and Module Parameters Using Machine Learning
计算机科学
生产(经济)
机器学习
人工智能
模拟
经济
宏观经济学
作者
Marco Ernst,Hannes Wagner-Mohnsen,Sven Wasmer,B. Klöter,Pietro P. Altermatt
标识
DOI:10.1364/iprsn.2023.jw2e.5
摘要
We use machine learning and device physics to analyze mass-produced solar modules, identifying factors that affect performance. Our approach is demonstrated by simulating 10,000 PERC solar cells and 2,000 half-cell modules using numerical device simulations. Our flexible approach can be applied to real data from production lines and scenarios.