人员选择
心理信息
考试(生物学)
心理学
背景(考古学)
选择(遗传算法)
应用心理学
叙述的
人工智能
计算机科学
机器学习
自然语言处理
社会心理学
梅德林
统计
语言学
哲学
法学
古生物学
生物
数学
政治学
作者
Emily D. Campion,Michael A. Campion,James F. Johnson,Thomas R. Carretta,Sophie Romay,Bobbie Dirr,Andrew Deregla,Amanda Mouton
摘要
The purpose of this research is to demonstrate how using natural language processing (NLP) on narrative application data can improve prediction and reduce racial subgroup differences in scores used for selection decisions compared to mental ability test scores and numeric application data. We posit there is uncaptured and job-related constructs that can be gleaned from applicant text data using NLP. We test our hypotheses in an operational context across four samples (total
科研通智能强力驱动
Strongly Powered by AbleSci AI