Fast and precise DEM parameter calibration for Cucurbita ficifolia seeds

校准 解算器 决定系数 休止角 近似误差 数学 响应面法 离散元法 算法 模拟 生物系统 计算机科学 统计 材料科学 机械 数学优化 物理 复合材料 生物
作者
Xinting Ding,Binbin Wang,Zhi He,Yinggang Shi,Kai Li,Yongjie Cui,Qichang Yang
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:236: 258-276
标识
DOI:10.1016/j.biosystemseng.2023.11.004
摘要

The lack of discrete element method (DEM) models and calibration parameters for Cucurbita ficifolia seeds, as well as low accuracy and efficiency of common parameters calibration methods, hinder the application of DEM for computer simulation in air-suction directional seeding equipment. In this study, the DEM parameters of the seeds were calibrated. The angle of repose (AOR), intrinsic parameters, and partial contact parameters of the seeds were experimentally measured. The seed 3D models were reconstructed based on the three-view profile information. The parameters and their value ranges were filtered through the Plackett–Burman design and steepest ascent test. The response surface method (RSM) and machine learning were utilised for optimisation inversion of the parameters. The experiments showed that the geometric relative error of the seed model was 0.69–6.54%, which meets the modelling requirements for DEM. The seed–seed static friction coefficient, the seed–seed and the seed–PVC rolling friction coefficient were 0.341, 0.026, and 0.059, respectively, which were obtained by inverting the GA-BP regression model via the Genetic Algorithm. The simulated AOR was 26.64°, with a relative error compared to the actual AOR of 1.64%, which was better than the simulated AOR obtained by RSM optimisation. The greater the smoothing value setting in EDEM software, the less the particle filling, resulting in improved simulation efficiency but reduced model accuracy. The CPU + GPU(CUDA) solver showed high DEM solution efficiency. The results reveal that the method can be used to quickly and accurately construct a 3D model of the seed, and the parameter optimisation accuracy of GA-BP-GA is better than that of RSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
刚刚
领导范儿应助单纯面包采纳,获得10
刚刚
xinC完成签到 ,获得积分10
1秒前
NexusExplorer应助紧张的妖妖采纳,获得10
2秒前
2秒前
哈哈哈哈发布了新的文献求助30
3秒前
5秒前
aaoo发布了新的文献求助10
6秒前
wenjian发布了新的文献求助10
7秒前
ding应助甜美的音响采纳,获得10
7秒前
8秒前
8秒前
希勤发布了新的文献求助10
10秒前
zhinian28完成签到 ,获得积分10
11秒前
焚风发布了新的文献求助10
13秒前
13秒前
阿飞完成签到,获得积分10
14秒前
嘀嘀哒哒发布了新的文献求助10
14秒前
无趣养乐多完成签到 ,获得积分10
14秒前
快乐小恬完成签到 ,获得积分10
15秒前
JamesPei应助冷酷的听兰采纳,获得10
15秒前
HEIKU应助dingdingkche采纳,获得10
15秒前
17秒前
希勤完成签到,获得积分10
18秒前
小张同学完成签到,获得积分10
18秒前
共享精神应助嘀嘀哒哒采纳,获得10
19秒前
19秒前
19秒前
20秒前
zyyin发布了新的文献求助10
21秒前
12341完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
墨秘一完成签到,获得积分10
24秒前
sutharsons应助毛豆爸爸采纳,获得200
26秒前
alltoowell完成签到,获得积分0
26秒前
追寻清完成签到,获得积分10
27秒前
sadascaqwqw完成签到 ,获得积分10
27秒前
老实外绣发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023