Fast and precise DEM parameter calibration for Cucurbita ficifolia seeds

校准 解算器 决定系数 休止角 近似误差 数学 响应面法 算法 模拟 生物系统 计算机科学 统计 材料科学 数学优化 复合材料 生物
作者
Xinting Ding,Binbin Wang,Zhi He,Yinggang Shi,Kai Li,Yongjie Cui,Qichang Yang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:236: 258-276 被引量:22
标识
DOI:10.1016/j.biosystemseng.2023.11.004
摘要

The lack of discrete element method (DEM) models and calibration parameters for Cucurbita ficifolia seeds, as well as low accuracy and efficiency of common parameters calibration methods, hinder the application of DEM for computer simulation in air-suction directional seeding equipment. In this study, the DEM parameters of the seeds were calibrated. The angle of repose (AOR), intrinsic parameters, and partial contact parameters of the seeds were experimentally measured. The seed 3D models were reconstructed based on the three-view profile information. The parameters and their value ranges were filtered through the Plackett–Burman design and steepest ascent test. The response surface method (RSM) and machine learning were utilised for optimisation inversion of the parameters. The experiments showed that the geometric relative error of the seed model was 0.69–6.54%, which meets the modelling requirements for DEM. The seed–seed static friction coefficient, the seed–seed and the seed–PVC rolling friction coefficient were 0.341, 0.026, and 0.059, respectively, which were obtained by inverting the GA-BP regression model via the Genetic Algorithm. The simulated AOR was 26.64°, with a relative error compared to the actual AOR of 1.64%, which was better than the simulated AOR obtained by RSM optimisation. The greater the smoothing value setting in EDEM software, the less the particle filling, resulting in improved simulation efficiency but reduced model accuracy. The CPU + GPU(CUDA) solver showed high DEM solution efficiency. The results reveal that the method can be used to quickly and accurately construct a 3D model of the seed, and the parameter optimisation accuracy of GA-BP-GA is better than that of RSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
常常完成签到,获得积分10
3秒前
笑哈哈完成签到,获得积分10
4秒前
4秒前
Need_Knowledge完成签到,获得积分10
5秒前
欢呼问旋完成签到,获得积分10
6秒前
7秒前
隐形曼青应助陈陈采纳,获得10
8秒前
研友_VZG7GZ应助Need_Knowledge采纳,获得10
8秒前
sihui完成签到,获得积分10
8秒前
搜集达人应助啊巴拉采纳,获得10
9秒前
Aaron完成签到,获得积分10
10秒前
Shacoooo发布了新的文献求助10
10秒前
小毛线完成签到,获得积分10
11秒前
11秒前
Ricky发布了新的文献求助10
12秒前
铭心发布了新的文献求助10
13秒前
李雨珍完成签到,获得积分10
13秒前
15秒前
15秒前
15秒前
17秒前
汽水味发布了新的文献求助10
18秒前
Aaron发布了新的文献求助10
18秒前
陈陈发布了新的文献求助10
20秒前
21秒前
轩轩发布了新的文献求助10
21秒前
liden发布了新的文献求助10
24秒前
NexusExplorer应助轩轩采纳,获得10
25秒前
SCIfafafafa发布了新的文献求助10
26秒前
桐桐应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
地表飞猪应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450