Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation

医学 重症监护室 共病 子群分析 接收机工作特性 急诊医学 危重病 重症监护医学 内科学 病危 置信区间
作者
Xiaoli Liu,Pan Hu,Wesley Yeung,Zhongheng Zhang,Vanda Ho,Chao Liu,Clark DuMontier,Patrick Thoral,Zhi Mao,Desen Cao,Roger G. Mark,Zhengbo Zhang,Mengling Feng,Deyu Li,Leo Anthony Celi
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (10): e657-e667 被引量:35
标识
DOI:10.1016/s2589-7500(23)00128-0
摘要

BackgroundComorbidity, frailty, and decreased cognitive function lead to a higher risk of death in elderly patients (more than 65 years of age) during acute medical events. Early and accurate illness severity assessment can support appropriate decision making for clinicians caring for these patients. We aimed to develop ELDER-ICU, a machine learning model to assess the illness severity of older adults admitted to the intensive care unit (ICU) with cohort-specific calibration and evaluation for potential model bias.MethodsIn this retrospective, international multicentre study, the ELDER-ICU model was developed using data from 14 US hospitals, and validated in 171 hospitals from the USA and Netherlands. Data were extracted from the Medical Information Mart for Intensive Care database, electronic ICU Collaborative Research Database, and Amsterdam University Medical Centers Database. We used six categories of data as predictors, including demographics and comorbidities, physical frailty, laboratory tests, vital signs, treatments, and urine output. Patient data from the first day of ICU stay were used to predict in-hospital mortality. We used the eXtreme Gradient Boosting algorithm (XGBoost) to develop models and the SHapley Additive exPlanations method to explain model prediction. The trained model was calibrated before internal, external, and temporal validation. The final XGBoost model was compared against three other machine learning algorithms and five clinical scores. We performed subgroup analysis based on age, sex, and race. We assessed the discrimination and calibration of models using the area under receiver operating characteristic (AUROC) and standardised mortality ratio (SMR) with 95% CIs.FindingsUsing the development dataset (n=50 366) and predictive model building process, the XGBoost algorithm performed the best in all types of validations compared with other machine learning algorithms and clinical scores (internal validation with 5037 patients from 14 US hospitals, AUROC=0·866 [95% CI 0·851–0·880]; external validation in the US population with 20 541 patients from 169 hospitals, AUROC=0·838 [0·829–0·847]; external validation in European population with 2411 patients from one hospital, AUROC=0·833 [0·812–0·853]; temporal validation with 4311 patients from one hospital, AUROC=0·884 [0·869–0·897]). In the external validation set (US population), the median AUROCs of bias evaluations covering eight subgroups were above 0·81, and the overall SMR was 0·99 (0·96–1·03). The top ten risk predictors were the minimum Glasgow Coma Scale score, total urine output, average respiratory rate, mechanical ventilation use, best state of activity, Charlson Comorbidity Index score, geriatric nutritional risk index, code status, age, and maximum blood urea nitrogen. A simplified model containing only the top 20 features (ELDER-ICU-20) had similar predictive performance to the full model.InterpretationThe ELDER-ICU model reliably predicts the risk of in-hospital mortality using routinely collected clinical features. The predictions could inform clinicians about patients who are at elevated risk of deterioration. Prospective validation of this model in clinical practice and a process for continuous performance monitoring and model recalibration are needed.FundingNational Institutes of Health, National Natural Science Foundation of China, National Special Health Science Program, Health Science and Technology Plan of Zhejiang Province, Fundamental Research Funds for the Central Universities, Drug Clinical Evaluate Research of Chinese Pharmaceutical Association, and National Key R&D Program of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
尔东发布了新的文献求助10
1秒前
1秒前
华仔应助路航采纳,获得10
3秒前
3秒前
zhengzehong完成签到,获得积分10
3秒前
火星上白羊完成签到,获得积分10
3秒前
科研通AI6.1应助哟哟采纳,获得10
3秒前
李程阳完成签到 ,获得积分10
3秒前
4秒前
Lee完成签到,获得积分10
5秒前
小二郎应助台雨萌采纳,获得10
5秒前
5秒前
6秒前
科研通AI6应助cherrymoon3采纳,获得10
6秒前
柒八染完成签到,获得积分10
7秒前
7秒前
粥喝不喝完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
蓝天发布了新的文献求助10
8秒前
一减完成签到 ,获得积分10
8秒前
erhao发布了新的文献求助10
8秒前
sx发布了新的文献求助10
9秒前
9秒前
火星上的西牛完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
八森木完成签到,获得积分10
10秒前
Jasper应助VAPORX采纳,获得10
10秒前
11秒前
ST发布了新的文献求助10
11秒前
小马甲应助真多人用这名采纳,获得10
11秒前
12秒前
健康的宛菡完成签到 ,获得积分10
12秒前
怡然缘分发布了新的文献求助10
13秒前
呆呆完成签到 ,获得积分10
13秒前
八森木发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082