亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation

医学 重症监护室 共病 子群分析 接收机工作特性 急诊医学 危重病 重症监护医学 内科学 病危 置信区间
作者
Xiaoli Liu,Pan Hu,Wesley Yeung,Zhongheng Zhang,Vanda Ho,Chao Liu,Clark DuMontier,Patrick Thoral,Zhi Mao,Desen Cao,Roger G. Mark,Zhengbo Zhang,Mengling Feng,Deyu Li,Leo Anthony Celi
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (10): e657-e667 被引量:26
标识
DOI:10.1016/s2589-7500(23)00128-0
摘要

BackgroundComorbidity, frailty, and decreased cognitive function lead to a higher risk of death in elderly patients (more than 65 years of age) during acute medical events. Early and accurate illness severity assessment can support appropriate decision making for clinicians caring for these patients. We aimed to develop ELDER-ICU, a machine learning model to assess the illness severity of older adults admitted to the intensive care unit (ICU) with cohort-specific calibration and evaluation for potential model bias.MethodsIn this retrospective, international multicentre study, the ELDER-ICU model was developed using data from 14 US hospitals, and validated in 171 hospitals from the USA and Netherlands. Data were extracted from the Medical Information Mart for Intensive Care database, electronic ICU Collaborative Research Database, and Amsterdam University Medical Centers Database. We used six categories of data as predictors, including demographics and comorbidities, physical frailty, laboratory tests, vital signs, treatments, and urine output. Patient data from the first day of ICU stay were used to predict in-hospital mortality. We used the eXtreme Gradient Boosting algorithm (XGBoost) to develop models and the SHapley Additive exPlanations method to explain model prediction. The trained model was calibrated before internal, external, and temporal validation. The final XGBoost model was compared against three other machine learning algorithms and five clinical scores. We performed subgroup analysis based on age, sex, and race. We assessed the discrimination and calibration of models using the area under receiver operating characteristic (AUROC) and standardised mortality ratio (SMR) with 95% CIs.FindingsUsing the development dataset (n=50 366) and predictive model building process, the XGBoost algorithm performed the best in all types of validations compared with other machine learning algorithms and clinical scores (internal validation with 5037 patients from 14 US hospitals, AUROC=0·866 [95% CI 0·851–0·880]; external validation in the US population with 20 541 patients from 169 hospitals, AUROC=0·838 [0·829–0·847]; external validation in European population with 2411 patients from one hospital, AUROC=0·833 [0·812–0·853]; temporal validation with 4311 patients from one hospital, AUROC=0·884 [0·869–0·897]). In the external validation set (US population), the median AUROCs of bias evaluations covering eight subgroups were above 0·81, and the overall SMR was 0·99 (0·96–1·03). The top ten risk predictors were the minimum Glasgow Coma Scale score, total urine output, average respiratory rate, mechanical ventilation use, best state of activity, Charlson Comorbidity Index score, geriatric nutritional risk index, code status, age, and maximum blood urea nitrogen. A simplified model containing only the top 20 features (ELDER-ICU-20) had similar predictive performance to the full model.InterpretationThe ELDER-ICU model reliably predicts the risk of in-hospital mortality using routinely collected clinical features. The predictions could inform clinicians about patients who are at elevated risk of deterioration. Prospective validation of this model in clinical practice and a process for continuous performance monitoring and model recalibration are needed.FundingNational Institutes of Health, National Natural Science Foundation of China, National Special Health Science Program, Health Science and Technology Plan of Zhejiang Province, Fundamental Research Funds for the Central Universities, Drug Clinical Evaluate Research of Chinese Pharmaceutical Association, and National Key R&D Program of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Boren采纳,获得10
11秒前
Raunio完成签到,获得积分10
13秒前
Akitten发布了新的文献求助10
26秒前
完美世界应助lhy采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Boren发布了新的文献求助10
1分钟前
lhy发布了新的文献求助10
1分钟前
董可以发布了新的文献求助10
1分钟前
风吹而过完成签到 ,获得积分10
1分钟前
乐乐应助董可以采纳,获得10
1分钟前
2分钟前
2分钟前
liufan完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
杪夏二八完成签到 ,获得积分10
4分钟前
souther完成签到,获得积分0
4分钟前
乐乐应助Akitten采纳,获得10
4分钟前
4分钟前
kangkang发布了新的文献求助10
4分钟前
传奇完成签到 ,获得积分10
5分钟前
jyy关闭了jyy文献求助
5分钟前
丘比特应助怕孤单的思雁采纳,获得10
5分钟前
5分钟前
5分钟前
Akitten发布了新的文献求助10
5分钟前
5分钟前
Li完成签到,获得积分10
6分钟前
6分钟前
自然的衫完成签到 ,获得积分10
6分钟前
6分钟前
阿巴阿巴茶完成签到,获得积分10
6分钟前
lhy发布了新的文献求助10
7分钟前
CipherSage应助科研通管家采纳,获得10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990332
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256483
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234