Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation

医学 重症监护室 共病 子群分析 接收机工作特性 急诊医学 危重病 重症监护医学 内科学 病危 置信区间
作者
Xiaoli Liu,Pan Hu,Wesley Yeung,Zhongheng Zhang,Vanda Ho,Chao Liu,Clark DuMontier,Patrick Thoral,Zhi Mao,Desen Cao,Roger G. Mark,Zhengbo Zhang,Mengling Feng,Deyu Li,Leo Anthony Celi
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (10): e657-e667 被引量:35
标识
DOI:10.1016/s2589-7500(23)00128-0
摘要

BackgroundComorbidity, frailty, and decreased cognitive function lead to a higher risk of death in elderly patients (more than 65 years of age) during acute medical events. Early and accurate illness severity assessment can support appropriate decision making for clinicians caring for these patients. We aimed to develop ELDER-ICU, a machine learning model to assess the illness severity of older adults admitted to the intensive care unit (ICU) with cohort-specific calibration and evaluation for potential model bias.MethodsIn this retrospective, international multicentre study, the ELDER-ICU model was developed using data from 14 US hospitals, and validated in 171 hospitals from the USA and Netherlands. Data were extracted from the Medical Information Mart for Intensive Care database, electronic ICU Collaborative Research Database, and Amsterdam University Medical Centers Database. We used six categories of data as predictors, including demographics and comorbidities, physical frailty, laboratory tests, vital signs, treatments, and urine output. Patient data from the first day of ICU stay were used to predict in-hospital mortality. We used the eXtreme Gradient Boosting algorithm (XGBoost) to develop models and the SHapley Additive exPlanations method to explain model prediction. The trained model was calibrated before internal, external, and temporal validation. The final XGBoost model was compared against three other machine learning algorithms and five clinical scores. We performed subgroup analysis based on age, sex, and race. We assessed the discrimination and calibration of models using the area under receiver operating characteristic (AUROC) and standardised mortality ratio (SMR) with 95% CIs.FindingsUsing the development dataset (n=50 366) and predictive model building process, the XGBoost algorithm performed the best in all types of validations compared with other machine learning algorithms and clinical scores (internal validation with 5037 patients from 14 US hospitals, AUROC=0·866 [95% CI 0·851–0·880]; external validation in the US population with 20 541 patients from 169 hospitals, AUROC=0·838 [0·829–0·847]; external validation in European population with 2411 patients from one hospital, AUROC=0·833 [0·812–0·853]; temporal validation with 4311 patients from one hospital, AUROC=0·884 [0·869–0·897]). In the external validation set (US population), the median AUROCs of bias evaluations covering eight subgroups were above 0·81, and the overall SMR was 0·99 (0·96–1·03). The top ten risk predictors were the minimum Glasgow Coma Scale score, total urine output, average respiratory rate, mechanical ventilation use, best state of activity, Charlson Comorbidity Index score, geriatric nutritional risk index, code status, age, and maximum blood urea nitrogen. A simplified model containing only the top 20 features (ELDER-ICU-20) had similar predictive performance to the full model.InterpretationThe ELDER-ICU model reliably predicts the risk of in-hospital mortality using routinely collected clinical features. The predictions could inform clinicians about patients who are at elevated risk of deterioration. Prospective validation of this model in clinical practice and a process for continuous performance monitoring and model recalibration are needed.FundingNational Institutes of Health, National Natural Science Foundation of China, National Special Health Science Program, Health Science and Technology Plan of Zhejiang Province, Fundamental Research Funds for the Central Universities, Drug Clinical Evaluate Research of Chinese Pharmaceutical Association, and National Key R&D Program of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
32429606完成签到 ,获得积分10
5秒前
养猪大户完成签到 ,获得积分10
6秒前
7秒前
小白完成签到,获得积分10
9秒前
酷酷的涵蕾完成签到 ,获得积分10
11秒前
pH7发布了新的文献求助10
12秒前
杨三多完成签到,获得积分10
12秒前
zxy14完成签到,获得积分10
15秒前
Yanzhi完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
欢喜板凳完成签到 ,获得积分0
17秒前
草莓雪酪完成签到,获得积分10
17秒前
pH7完成签到,获得积分10
18秒前
XU博士完成签到,获得积分10
27秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
apocalypse完成签到 ,获得积分10
32秒前
Chen完成签到 ,获得积分10
34秒前
handsome完成签到 ,获得积分10
34秒前
呵呵喊我完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
41秒前
方方完成签到 ,获得积分10
42秒前
记上没文献了完成签到 ,获得积分10
49秒前
Epiphany完成签到 ,获得积分10
50秒前
香蕉飞瑶完成签到 ,获得积分10
52秒前
Yonckham完成签到,获得积分10
54秒前
hute完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
羽羽完成签到 ,获得积分10
1分钟前
xrt完成签到,获得积分10
1分钟前
XuNan完成签到,获得积分10
1分钟前
lyf完成签到 ,获得积分10
1分钟前
1分钟前
白日梦完成签到,获得积分10
1分钟前
烟消云散完成签到,获得积分10
1分钟前
白日梦发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771649
捐赠科研通 4615679
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575