小菜蛾
菜蛾
生物测定
有害生物分析
毒理
杀虫剂
生物杀虫剂
生物
农业害虫
噻唑
化学
幼虫
立体化学
农学
植物
生态学
农业科学
作者
Shuai Yang,Jiahong Tang,Hongxiang Peng,Chunmei Pu,Shuting Fan,Chen Zhao,Hanhong Xu
摘要
Agricultural pests have caused huge losses in agricultural production and threaten global food security. Synthetic insecticides remain the major control method. However, with the rapid development of pest resistance and the increasingly stringent regulations on pesticide usage, the development of efficient insecticides with novel structures is particularly urgent.Twenty-six novel anthranilic diamide derivatives containing the thiazole moiety were designed based on the scaffold hopping strategy. Bioassay results indicated that compound 6e exhibited excellent insecticidal activity against a susceptible strain of diamondback moth (Plutella xylostella) with a median lethal concentration (LC50 ) of 0.65 mg L-1 , which was similar to chlorantraniliprole (LC50 = 0.53 mg L-1 ). Compound 6e showed marginally lower (LC50 = 50.45 mg L-1 ) insecticidal activity than chlorantraniliprole (LC50 = 31.98 mg L-1 ) on chlorantraniliprole-resistant P. xylostella larvae, suggesting a cross-resistance of compound 6e with chlorantraniliprole (resistance ratios, 77.6-fold and 60.3-fold, respectively). Compound 6e also showed good insecticidal activity against fall armyworm and beet armyworm with pest mortalities of 74% and 64%, respectively, at 5 mg L-1 concentration. In addition, compounds 6e and 12a showed delayed toxicity against red imported fire ant with mortality rates of 84% and 85% (respectively) after 5 days of treatment at 1.0 mg L-1 , which were superior to that of chlorantraniliprole.The introduction of thiazole into anthranilic diamide scaffolds resulted in insecticidal leads 6e and 12a with excellent insecticidal activities and potential application in controlling red imported fire ants. The work also guides the discovery of insecticidal molecules with thiazole-containing anthranilic diamide scaffold. © 2023 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI