To Each Their Own: Personalized Product Positioning and Competition

竞赛(生物学) 产品(数学) 业务 计算机科学 电信 广告 互联网隐私 几何学 生态学 数学 生物
作者
Jinzhao Du,Z. Eddie Ning
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4544514
摘要

This paper studies a model of competition between two firms that offer personalized product positioning to consumers with horizontally distributed tastes. Firms have private, imperfect signals of each consumer's ideal location and offer each consumer a personalized positioning and price depending on that signal, without observing the competing firm's personalized offering. We characterize the equilibrium personalization strategy and examine how the accuracies of firms' signals affect equilibrium strategy, profits, and consumer welfare. We find that a competing firm charges a higher price and earns a higher profit for a more niche positioning unless the firm's prediction accuracy is sufficiently low. When both firms have access to the same industry-level prediction accuracy, we find that the average price does not depend on accuracy, that firms charge a higher price when offering a more niche positioning, and that the average level of differentiation first increases and then decreases in the prediction accuracy. Interestingly, equilibrium profits also have an inverse-U shape in the prediction accuracy. A higher accuracy can decrease welfare for consumers with very mainstream tastes. When firms can endogenously invest in prediction accuracy, firms over-invest in equilibrium which results in a prisoner's dilemma. In such a case, firms can benefit from industry-level self-regulations that restrict their ability to predict individual consumer preferences. The paper also discusses what happens if firms charge subscription pricing or if consumers' ideal locations are distributed on the Salop Circle, highlighting price discrimination between mainstream and niche consumers as the key driver of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅秋双发布了新的文献求助10
1秒前
优秀丸子完成签到,获得积分10
1秒前
小明应助FrankJeffison采纳,获得10
1秒前
2秒前
小二郎应助12采纳,获得10
3秒前
ziyue发布了新的文献求助10
3秒前
kevindm发布了新的文献求助10
3秒前
4秒前
人工智能小配方完成签到,获得积分10
6秒前
小五完成签到 ,获得积分20
7秒前
云无意发布了新的文献求助10
7秒前
黑豆子完成签到,获得积分10
8秒前
9秒前
Paul111完成签到,获得积分10
10秒前
jzt12138发布了新的文献求助10
11秒前
11秒前
青青闭上眼睛完成签到,获得积分10
13秒前
13秒前
英姑应助fufu采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
大豆子完成签到,获得积分10
17秒前
浮游应助青青闭上眼睛采纳,获得10
17秒前
17秒前
王贤平发布了新的文献求助10
17秒前
18秒前
20秒前
万能图书馆应助清脆安南采纳,获得10
20秒前
天真苑睐完成签到,获得积分10
21秒前
Leo完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
Azure完成签到,获得积分10
22秒前
Akim应助美好斓采纳,获得10
25秒前
遇见发布了新的文献求助10
25秒前
小豆子完成签到,获得积分10
27秒前
Jane完成签到 ,获得积分10
29秒前
30秒前
30秒前
32秒前
TL111发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109