Exploring Multiple Hypergraphs for Heterogeneous Graph Neural Networks

计算机科学 超图 同种类的 图形 网络母题 理论计算机科学 主题(音乐) 人工智能 复杂网络 数学 万维网 物理 离散数学 组合数学 声学
作者
Ying Wang,Yingji Li,Yongge Wu,Xin Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121230-121230
标识
DOI:10.1016/j.eswa.2023.121230
摘要

Graph neural networks have demonstrated significant power in learning graph representations for homogeneous networks. However, real-world network data can often be denoted by heterogeneous networks with different types of nodes and edges, such as social, traffic, and molecular networks. Network heterogeneity presents significant challenges for network analysis and mining. Motif-based hypergraphs preserve high-order proximity and capture composite semantic interactions. Because not all nodes and edges in the original network always exist in a specific hypergraph, it is essential that multiple motif-based hypergraphs are considered to enhance the network representation. Therefore, we propose a novel framework for exploring Multiple Motif-based Hypergraphs for Heterogeneous Graph Neural Networks to learn network representations, named MoH-HGNN, which leverages hypergraph convolution and attention operations to capture complex connectivity patterns. Specifically, we conducted two levels of attention networks with hierarchical structures, namely hyperedge-level attention to learn the importance among different types of nodes and comprehensive semantic-level attention to capture the importance of different types of motif structures. We extensively experimented on four real-world datasets to verify the effectiveness of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
余南发布了新的文献求助10
2秒前
3秒前
HCl完成签到,获得积分10
3秒前
4秒前
kingwill应助欣喜的鹰采纳,获得20
4秒前
量子星尘发布了新的文献求助10
6秒前
所所应助QAQ采纳,获得10
6秒前
烟花应助trial采纳,获得10
6秒前
7秒前
ding应助福明明采纳,获得10
7秒前
8秒前
慕青应助韶华采纳,获得10
9秒前
余南完成签到,获得积分10
9秒前
Yara完成签到 ,获得积分10
9秒前
wanci应助www采纳,获得10
10秒前
10秒前
11秒前
一只特立独行的朱完成签到,获得积分10
12秒前
深味i完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
子唯发布了新的文献求助10
14秒前
kk发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
xuan关注了科研通微信公众号
16秒前
16秒前
娜娜发布了新的文献求助10
17秒前
LaTeXer应助科研通管家采纳,获得80
17秒前
棋士应助科研通管家采纳,获得10
17秒前
Rondab应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
自信南霜应助科研通管家采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019