亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid random forest-based models for predicting shear strength of structural surfaces based on surface morphology parameters and metaheuristic algorithms

均方误差 峰度 随机森林 算法 数学 平均绝对百分比误差 标准差 均方根 相关系数 粒子群优化 决定系数 支持向量机 统计 计算机科学 人工智能 物理 量子力学
作者
Jian Zhou,Peixi Yang,Chuanqi Li,Kun Du
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:409: 133911-133911 被引量:6
标识
DOI:10.1016/j.conbuildmat.2023.133911
摘要

The prediction of shear strength between soil-structure interactions is of great significance to the stability of geotechnical engineering. In this study, 480 morphological data with seven morphological parameters (deviation of the root mean square value of the profile (Pq), skewness of the height distribution in the profile (Psk), kurtosis of the height distribution of the profiles (Pku), average width of outline elements (PSm), root mean square slope of the profile (Pdq), material ratio of the profile(Pmr), number of peaks (Ppc)) were selected to generate a comprehensive database for predicting the peak interface efficiency (IEp) considering three different soil particle sizes (0.35 mm, 0.53 mm, and 0.80 mm). Three random forest (RF) models optimized using dragonfly algorithm (DA-RF), sparrow search algorithm optimized random forest (SSA-RF), and whale optimization algorithm (WOA-RF) were generated to predict IEp. and compared the predictive performance with extreme learning machine (ELM), support vector regression with radial basis function kernel (SVR-RBF) and initial RF models. The mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R2) were used to evaluate the performance of all models. The results showed that the WOA-RF model has achieved the best performance by resulting in MAE of (0.0145, 0.0181, 0.0179 and 0.0210, 0.0273, 0.0216), MAPE of (1.9866, 2.6417, 2.5310 and 2.8924, 4.0294, 3.0816), and RMSE of (0 0178, 0.0237,0.0224 and 0.0252, 0.0362, 0.0276), R2 (0.9473, 0.9262, 0.9352 and 0.9404, 0.8433, 0.9313) in the training and testing phases. The results of significance analysis indicated that Pdq and Pq have more importance than other parameters for predicting IEp.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云蓝完成签到 ,获得积分10
15秒前
oi完成签到 ,获得积分10
21秒前
yang完成签到 ,获得积分10
23秒前
777关闭了777文献求助
35秒前
Owen应助NEKO采纳,获得10
40秒前
li完成签到 ,获得积分10
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
zxxxxxz完成签到,获得积分10
1分钟前
1分钟前
zxxxxxz发布了新的文献求助10
1分钟前
ZSJ完成签到,获得积分20
1分钟前
1分钟前
yuxi2025完成签到 ,获得积分10
1分钟前
ZSJ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
NEKO发布了新的文献求助10
1分钟前
lige完成签到 ,获得积分10
2分钟前
天天快乐应助光轮2000采纳,获得10
2分钟前
2分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
科目三应助满意的世界采纳,获得10
2分钟前
张杰列夫完成签到 ,获得积分10
2分钟前
小竖完成签到 ,获得积分10
2分钟前
啊姜姜姜姜姜完成签到 ,获得积分10
2分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
kouxinyao完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zakaria发布了新的文献求助10
3分钟前
顾矜应助光轮2000采纳,获得10
3分钟前
3分钟前
3分钟前
光轮2000发布了新的文献求助10
3分钟前
111完成签到 ,获得积分20
3分钟前
Joceelyn完成签到,获得积分10
3分钟前
完美的海完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853356
捐赠科研通 4689089
什么是DOI,文献DOI怎么找? 2540594
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594