Hybrid random forest-based models for predicting shear strength of structural surfaces based on surface morphology parameters and metaheuristic algorithms

均方误差 峰度 随机森林 算法 数学 平均绝对百分比误差 标准差 均方根 相关系数 粒子群优化 决定系数 支持向量机 统计 计算机科学 人工智能 物理 量子力学
作者
Jian Zhou,Peixi Yang,Chuanqi Li,Kun Du
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:409: 133911-133911 被引量:6
标识
DOI:10.1016/j.conbuildmat.2023.133911
摘要

The prediction of shear strength between soil-structure interactions is of great significance to the stability of geotechnical engineering. In this study, 480 morphological data with seven morphological parameters (deviation of the root mean square value of the profile (Pq), skewness of the height distribution in the profile (Psk), kurtosis of the height distribution of the profiles (Pku), average width of outline elements (PSm), root mean square slope of the profile (Pdq), material ratio of the profile(Pmr), number of peaks (Ppc)) were selected to generate a comprehensive database for predicting the peak interface efficiency (IEp) considering three different soil particle sizes (0.35 mm, 0.53 mm, and 0.80 mm). Three random forest (RF) models optimized using dragonfly algorithm (DA-RF), sparrow search algorithm optimized random forest (SSA-RF), and whale optimization algorithm (WOA-RF) were generated to predict IEp. and compared the predictive performance with extreme learning machine (ELM), support vector regression with radial basis function kernel (SVR-RBF) and initial RF models. The mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R2) were used to evaluate the performance of all models. The results showed that the WOA-RF model has achieved the best performance by resulting in MAE of (0.0145, 0.0181, 0.0179 and 0.0210, 0.0273, 0.0216), MAPE of (1.9866, 2.6417, 2.5310 and 2.8924, 4.0294, 3.0816), and RMSE of (0 0178, 0.0237,0.0224 and 0.0252, 0.0362, 0.0276), R2 (0.9473, 0.9262, 0.9352 and 0.9404, 0.8433, 0.9313) in the training and testing phases. The results of significance analysis indicated that Pdq and Pq have more importance than other parameters for predicting IEp.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落后裙子发布了新的文献求助100
1秒前
嘿嘿完成签到,获得积分10
1秒前
风清扬发布了新的文献求助10
1秒前
jianan完成签到,获得积分10
2秒前
2秒前
猪嗝铁铁发布了新的文献求助10
3秒前
3秒前
冷静映安发布了新的文献求助30
3秒前
逆流的鱼发布了新的文献求助10
5秒前
6秒前
老实翠绿发布了新的文献求助10
6秒前
yejian完成签到,获得积分10
6秒前
Jasper应助健忘冬灵采纳,获得20
7秒前
7秒前
万能图书馆应助默默善愁采纳,获得50
8秒前
8秒前
Nano完成签到,获得积分10
9秒前
香蕉觅云应助honey采纳,获得10
9秒前
wang发布了新的文献求助10
10秒前
Lime完成签到,获得积分10
11秒前
飘逸的幻灵完成签到,获得积分10
11秒前
阿十发布了新的文献求助10
11秒前
正念完成签到,获得积分10
11秒前
SciGPT应助科研一号采纳,获得10
11秒前
13秒前
落后裙子完成签到,获得积分10
13秒前
ETJ发布了新的文献求助10
14秒前
深情安青应助好好采纳,获得10
15秒前
15秒前
Jenna完成签到,获得积分10
16秒前
呵呜哎辉完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
周小夭发布了新的文献求助10
19秒前
19秒前
酷炫的如风完成签到 ,获得积分10
19秒前
20秒前
默默善愁发布了新的文献求助50
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233