清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hybrid random forest-based models for predicting shear strength of structural surfaces based on surface morphology parameters and metaheuristic algorithms

均方误差 峰度 随机森林 算法 数学 平均绝对百分比误差 标准差 均方根 相关系数 粒子群优化 决定系数 支持向量机 统计 计算机科学 人工智能 物理 量子力学
作者
Jian Zhou,Peixi Yang,Chuanqi Li,Kun Du
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:409: 133911-133911 被引量:6
标识
DOI:10.1016/j.conbuildmat.2023.133911
摘要

The prediction of shear strength between soil-structure interactions is of great significance to the stability of geotechnical engineering. In this study, 480 morphological data with seven morphological parameters (deviation of the root mean square value of the profile (Pq), skewness of the height distribution in the profile (Psk), kurtosis of the height distribution of the profiles (Pku), average width of outline elements (PSm), root mean square slope of the profile (Pdq), material ratio of the profile(Pmr), number of peaks (Ppc)) were selected to generate a comprehensive database for predicting the peak interface efficiency (IEp) considering three different soil particle sizes (0.35 mm, 0.53 mm, and 0.80 mm). Three random forest (RF) models optimized using dragonfly algorithm (DA-RF), sparrow search algorithm optimized random forest (SSA-RF), and whale optimization algorithm (WOA-RF) were generated to predict IEp. and compared the predictive performance with extreme learning machine (ELM), support vector regression with radial basis function kernel (SVR-RBF) and initial RF models. The mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R2) were used to evaluate the performance of all models. The results showed that the WOA-RF model has achieved the best performance by resulting in MAE of (0.0145, 0.0181, 0.0179 and 0.0210, 0.0273, 0.0216), MAPE of (1.9866, 2.6417, 2.5310 and 2.8924, 4.0294, 3.0816), and RMSE of (0 0178, 0.0237,0.0224 and 0.0252, 0.0362, 0.0276), R2 (0.9473, 0.9262, 0.9352 and 0.9404, 0.8433, 0.9313) in the training and testing phases. The results of significance analysis indicated that Pdq and Pq have more importance than other parameters for predicting IEp.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG给勤奋的曼香的求助进行了留言
1秒前
5秒前
Ava应助春宇浩然采纳,获得10
17秒前
29秒前
34秒前
情怀应助无情的琳采纳,获得10
34秒前
相当鱼完成签到 ,获得积分10
39秒前
归尘发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
50秒前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zzgpku完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
李健应助天天采纳,获得10
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
3分钟前
逸云发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
球祝完成签到,获得积分10
3分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
欠缺完成签到,获得积分20
3分钟前
研友_VZG7GZ应助凉宫八月采纳,获得10
3分钟前
逸云完成签到,获得积分10
3分钟前
4分钟前
凉宫八月发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
凉宫八月完成签到,获得积分10
5分钟前
XZY发布了新的文献求助10
5分钟前
顾矜应助Wa1Zh0u采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724137
求助须知:如何正确求助?哪些是违规求助? 5285050
关于积分的说明 15299615
捐赠科研通 4872220
什么是DOI,文献DOI怎么找? 2616750
邀请新用户注册赠送积分活动 1566605
关于科研通互助平台的介绍 1523490