Hybrid random forest-based models for predicting shear strength of structural surfaces based on surface morphology parameters and metaheuristic algorithms

均方误差 峰度 随机森林 算法 数学 平均绝对百分比误差 标准差 均方根 相关系数 粒子群优化 决定系数 支持向量机 统计 计算机科学 人工智能 物理 量子力学
作者
Jian Zhou,Peixi Yang,Chuanqi Li,Kun Du
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:409: 133911-133911 被引量:6
标识
DOI:10.1016/j.conbuildmat.2023.133911
摘要

The prediction of shear strength between soil-structure interactions is of great significance to the stability of geotechnical engineering. In this study, 480 morphological data with seven morphological parameters (deviation of the root mean square value of the profile (Pq), skewness of the height distribution in the profile (Psk), kurtosis of the height distribution of the profiles (Pku), average width of outline elements (PSm), root mean square slope of the profile (Pdq), material ratio of the profile(Pmr), number of peaks (Ppc)) were selected to generate a comprehensive database for predicting the peak interface efficiency (IEp) considering three different soil particle sizes (0.35 mm, 0.53 mm, and 0.80 mm). Three random forest (RF) models optimized using dragonfly algorithm (DA-RF), sparrow search algorithm optimized random forest (SSA-RF), and whale optimization algorithm (WOA-RF) were generated to predict IEp. and compared the predictive performance with extreme learning machine (ELM), support vector regression with radial basis function kernel (SVR-RBF) and initial RF models. The mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R2) were used to evaluate the performance of all models. The results showed that the WOA-RF model has achieved the best performance by resulting in MAE of (0.0145, 0.0181, 0.0179 and 0.0210, 0.0273, 0.0216), MAPE of (1.9866, 2.6417, 2.5310 and 2.8924, 4.0294, 3.0816), and RMSE of (0 0178, 0.0237,0.0224 and 0.0252, 0.0362, 0.0276), R2 (0.9473, 0.9262, 0.9352 and 0.9404, 0.8433, 0.9313) in the training and testing phases. The results of significance analysis indicated that Pdq and Pq have more importance than other parameters for predicting IEp.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
yzx发布了新的文献求助10
4秒前
记ds发布了新的文献求助10
5秒前
张火火发布了新的文献求助10
8秒前
斯文败类应助WJP采纳,获得10
8秒前
乐乐应助完美修杰采纳,获得10
8秒前
9秒前
10秒前
10秒前
善学以致用应助记ds采纳,获得10
11秒前
梨子完成签到,获得积分10
12秒前
12秒前
12秒前
guojingjing发布了新的文献求助10
13秒前
可爱的函函应助K0h采纳,获得10
13秒前
changping应助烟酒僧采纳,获得10
15秒前
炙热的以南完成签到 ,获得积分10
15秒前
15秒前
科研通AI2S应助张火火采纳,获得10
15秒前
梨子发布了新的文献求助10
16秒前
Wdw2236发布了新的文献求助10
16秒前
外向的慕灵完成签到,获得积分10
18秒前
zzk发布了新的文献求助10
18秒前
小江不饿完成签到,获得积分10
20秒前
Hao发布了新的文献求助10
21秒前
23秒前
占那个完成签到 ,获得积分10
23秒前
wangcaoyi667完成签到,获得积分10
23秒前
传奇3应助guojingjing采纳,获得10
24秒前
26秒前
26秒前
大个应助烟酒僧采纳,获得10
27秒前
27秒前
缓慢怜翠发布了新的文献求助10
28秒前
28秒前
彭于晏应助白茶泡泡球采纳,获得10
29秒前
坦率灵煌完成签到,获得积分10
30秒前
一针超人发布了新的文献求助10
30秒前
maguodrgon发布了新的文献求助10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265