Frequency-domain MLPs are More Effective Learners in Time Series Forecasting

计算机科学 感知器 频域 瓶颈 人工智能 机器学习 钥匙(锁) 数据挖掘 依赖关系(UML) 系列(地层学) 人工神经网络 古生物学 计算机安全 计算机视觉 生物 嵌入式系统
作者
Kun Yi,Qi Zhang,Wei Fan,Shoujin Wang,Pengyang Wang,Hui He,Defu Lian,Ning An,Longbing Cao,Zhendong Niu
出处
期刊:Cornell University - arXiv 被引量:21
标识
DOI:10.48550/arxiv.2311.06184
摘要

Time series forecasting has played the key role in different industrial, including finance, traffic, energy, and healthcare domains. While existing literatures have designed many sophisticated architectures based on RNNs, GNNs, or Transformers, another kind of approaches based on multi-layer perceptrons (MLPs) are proposed with simple structure, low complexity, and {superior performance}. However, most MLP-based forecasting methods suffer from the point-wise mappings and information bottleneck, which largely hinders the forecasting performance. To overcome this problem, we explore a novel direction of applying MLPs in the frequency domain for time series forecasting. We investigate the learned patterns of frequency-domain MLPs and discover their two inherent characteristic benefiting forecasting, (i) global view: frequency spectrum makes MLPs own a complete view for signals and learn global dependencies more easily, and (ii) energy compaction: frequency-domain MLPs concentrate on smaller key part of frequency components with compact signal energy. Then, we propose FreTS, a simple yet effective architecture built upon Frequency-domain MLPs for Time Series forecasting. FreTS mainly involves two stages, (i) Domain Conversion, that transforms time-domain signals into complex numbers of frequency domain; (ii) Frequency Learning, that performs our redesigned MLPs for the learning of real and imaginary part of frequency components. The above stages operated on both inter-series and intra-series scales further contribute to channel-wise and time-wise dependency learning. Extensive experiments on 13 real-world benchmarks (including 7 benchmarks for short-term forecasting and 6 benchmarks for long-term forecasting) demonstrate our consistent superiority over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎健身发布了新的文献求助10
3秒前
小黑应助司徒呀采纳,获得30
8秒前
13秒前
Orange应助jing采纳,获得10
13秒前
fbsnbgfn完成签到,获得积分10
15秒前
杰行天下发布了新的文献求助10
15秒前
彭于晏应助祺祺采纳,获得10
16秒前
科研通AI2S应助虎头怪采纳,获得10
17秒前
科目三应助尊敬的马里奥采纳,获得10
18秒前
21秒前
科研通AI2S应助Lisen采纳,获得10
22秒前
26秒前
zqs354完成签到,获得积分10
27秒前
27秒前
一只虎子完成签到,获得积分10
28秒前
小耗子完成签到,获得积分10
31秒前
32秒前
35秒前
tt完成签到,获得积分10
36秒前
Sooinlee留下了新的社区评论
39秒前
42秒前
唐展通发布了新的文献求助20
42秒前
谨慎的采枫完成签到,获得积分10
44秒前
张瑞雪完成签到 ,获得积分10
44秒前
alexzlmmd发布了新的文献求助10
47秒前
48秒前
53秒前
54秒前
科研通AI2S应助满眼星辰采纳,获得10
56秒前
57秒前
57秒前
59秒前
祺祺发布了新的文献求助10
1分钟前
1分钟前
wtsow完成签到,获得积分0
1分钟前
111222发布了新的文献求助10
1分钟前
李李应助唐展通采纳,获得20
1分钟前
1分钟前
星辰完成签到,获得积分10
1分钟前
领导范儿应助alexzlmmd采纳,获得30
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371130
求助须知:如何正确求助?哪些是违规求助? 2989336
关于积分的说明 8735366
捐赠科研通 2672504
什么是DOI,文献DOI怎么找? 1464014
科研通“疑难数据库(出版商)”最低求助积分说明 677394
邀请新用户注册赠送积分活动 668645