Cross-domain Recommendation via Dual Adversarial Adaptation

计算机科学 对抗制 对偶(语法数字) 领域(数学分析) 适应(眼睛) 域适应 人工智能 心理学 艺术 神经科学 文学类 数学分析 数学 分类器(UML)
作者
Hongzu Su,Jingjing Li,Zhekai Du,Lei Zhu,Ke Lü,Hengtao Shen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (3): 1-26 被引量:4
标识
DOI:10.1145/3632524
摘要

Data scarcity is a perpetual challenge of recommendation systems, and researchers have proposed a variety of cross-domain recommendation methods to alleviate the problem of data scarcity in target domains. However, in many real-world cross-domain recommendation systems, the source domain and the target domain are sampled from different data distributions, which obstructs the cross-domain knowledge transfer. In this article, we propose to specifically align the data distributions between the source domain and the target domain to alleviate imbalanced sample distribution and thus challenge the data scarcity issue in the target domain. Technically, our proposed approach builds a dual adversarial adaptation (DAA) framework to adversarially train the target model together with a pre-trained source model. Two domain discriminators play the two-player minmax game with the target model and guide the target model to learn reliable domain-invariant features that can be transferred across domains. At the same time, the target model is calibrated to learn domain-specific information of the target domain. In addition, we formulate our approach as a plug-and-play module to boost existing recommendation systems. We apply the proposed method to address the issues of insufficient data and imbalanced sample distribution in real-world Click-through Rate/Conversion Rate predictions on two large-scale industrial datasets. We evaluate the proposed method in scenarios with and without overlapping users/items, and extensive experiments verify that the proposed method is able to significantly improve the prediction performance on the target domain. For instance, our method can boost PLE with a performance improvement of 15.4% in terms of Area Under Curve compared with single-domain PLE on our private game dataset. In addition, our method is able to surpass single-domain MMoE by 6.85% on the public datasets. Code: https://github.com/TL-UESTC/DAA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oblivious完成签到,获得积分10
刚刚
mkb完成签到,获得积分10
刚刚
刚刚
向秋发布了新的文献求助10
1秒前
王云骢完成签到,获得积分20
2秒前
甜蜜鹭洋完成签到 ,获得积分10
2秒前
xuxuxuuxuxux完成签到,获得积分10
2秒前
3秒前
月光族完成签到,获得积分10
3秒前
树下发布了新的文献求助10
3秒前
滴滴完成签到,获得积分20
5秒前
6秒前
七安发布了新的文献求助30
6秒前
LeePsy完成签到,获得积分10
6秒前
7秒前
深情安青应助hbutsj采纳,获得10
7秒前
小璐璐呀完成签到,获得积分10
8秒前
明亮安双完成签到,获得积分20
9秒前
Lemon完成签到,获得积分10
9秒前
sci一区作者完成签到,获得积分20
10秒前
包容柜子发布了新的文献求助10
10秒前
hhllhh发布了新的文献求助10
11秒前
河丫应助阳洋洋采纳,获得10
11秒前
11秒前
落霞与孤鹜齐飞完成签到,获得积分10
12秒前
12秒前
12秒前
hbuhfl完成签到,获得积分10
13秒前
小瑜完成签到,获得积分10
14秒前
小蘑菇应助Lemon采纳,获得10
14秒前
betty2009完成签到,获得积分10
14秒前
星星完成签到,获得积分10
14秒前
乐观如松关注了科研通微信公众号
14秒前
15秒前
Leo发布了新的文献求助20
16秒前
16秒前
幸运星完成签到,获得积分10
16秒前
包容柜子完成签到,获得积分10
17秒前
马某发布了新的文献求助10
17秒前
123完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029