亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-domain Recommendation via Dual Adversarial Adaptation

计算机科学 对抗制 对偶(语法数字) 领域(数学分析) 适应(眼睛) 域适应 人工智能 心理学 艺术 神经科学 文学类 数学分析 数学 分类器(UML)
作者
Hongzu Su,Jingjing Li,Zhekai Du,Lei Zhu,Ke Lü,Hengtao Shen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (3): 1-26 被引量:4
标识
DOI:10.1145/3632524
摘要

Data scarcity is a perpetual challenge of recommendation systems, and researchers have proposed a variety of cross-domain recommendation methods to alleviate the problem of data scarcity in target domains. However, in many real-world cross-domain recommendation systems, the source domain and the target domain are sampled from different data distributions, which obstructs the cross-domain knowledge transfer. In this article, we propose to specifically align the data distributions between the source domain and the target domain to alleviate imbalanced sample distribution and thus challenge the data scarcity issue in the target domain. Technically, our proposed approach builds a dual adversarial adaptation (DAA) framework to adversarially train the target model together with a pre-trained source model. Two domain discriminators play the two-player minmax game with the target model and guide the target model to learn reliable domain-invariant features that can be transferred across domains. At the same time, the target model is calibrated to learn domain-specific information of the target domain. In addition, we formulate our approach as a plug-and-play module to boost existing recommendation systems. We apply the proposed method to address the issues of insufficient data and imbalanced sample distribution in real-world Click-through Rate/Conversion Rate predictions on two large-scale industrial datasets. We evaluate the proposed method in scenarios with and without overlapping users/items, and extensive experiments verify that the proposed method is able to significantly improve the prediction performance on the target domain. For instance, our method can boost PLE with a performance improvement of 15.4% in terms of Area Under Curve compared with single-domain PLE on our private game dataset. In addition, our method is able to surpass single-domain MMoE by 6.85% on the public datasets. Code: https://github.com/TL-UESTC/DAA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
11秒前
zyz发布了新的文献求助20
16秒前
SDNUDRUG发布了新的文献求助10
26秒前
36秒前
SDNUDRUG完成签到,获得积分10
37秒前
大模型应助隋嫣然采纳,获得10
40秒前
潦草小狗完成签到 ,获得积分10
47秒前
tutu完成签到,获得积分10
51秒前
55秒前
英俊的铭应助zyz采纳,获得10
55秒前
鲁路修完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
PLEDGE完成签到,获得积分10
1分钟前
chuan发布了新的文献求助10
1分钟前
chuan完成签到,获得积分10
1分钟前
1分钟前
长街完成签到,获得积分10
1分钟前
长街发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
PengDai发布了新的文献求助200
2分钟前
2分钟前
YOGA1115发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
CodeCraft应助PengDai采纳,获得10
2分钟前
3分钟前
Meya发布了新的文献求助10
3分钟前
Meya完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Sunsheng应助娇气的亦云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031321
求助须知:如何正确求助?哪些是违规求助? 4266008
关于积分的说明 13298415
捐赠科研通 4075173
什么是DOI,文献DOI怎么找? 2228903
邀请新用户注册赠送积分活动 1237490
关于科研通互助平台的介绍 1162295