Cross-domain Recommendation via Dual Adversarial Adaptation

计算机科学 对抗制 对偶(语法数字) 领域(数学分析) 适应(眼睛) 域适应 人工智能 心理学 艺术 神经科学 文学类 数学分析 数学 分类器(UML)
作者
Hongzu Su,Jingjing Li,Zhekai Du,Lei Zhu,Ke Lü,Hengtao Shen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (3): 1-26 被引量:4
标识
DOI:10.1145/3632524
摘要

Data scarcity is a perpetual challenge of recommendation systems, and researchers have proposed a variety of cross-domain recommendation methods to alleviate the problem of data scarcity in target domains. However, in many real-world cross-domain recommendation systems, the source domain and the target domain are sampled from different data distributions, which obstructs the cross-domain knowledge transfer. In this article, we propose to specifically align the data distributions between the source domain and the target domain to alleviate imbalanced sample distribution and thus challenge the data scarcity issue in the target domain. Technically, our proposed approach builds a dual adversarial adaptation (DAA) framework to adversarially train the target model together with a pre-trained source model. Two domain discriminators play the two-player minmax game with the target model and guide the target model to learn reliable domain-invariant features that can be transferred across domains. At the same time, the target model is calibrated to learn domain-specific information of the target domain. In addition, we formulate our approach as a plug-and-play module to boost existing recommendation systems. We apply the proposed method to address the issues of insufficient data and imbalanced sample distribution in real-world Click-through Rate/Conversion Rate predictions on two large-scale industrial datasets. We evaluate the proposed method in scenarios with and without overlapping users/items, and extensive experiments verify that the proposed method is able to significantly improve the prediction performance on the target domain. For instance, our method can boost PLE with a performance improvement of 15.4% in terms of Area Under Curve compared with single-domain PLE on our private game dataset. In addition, our method is able to surpass single-domain MMoE by 6.85% on the public datasets. Code: https://github.com/TL-UESTC/DAA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
雪蛤完成签到,获得积分20
1秒前
sxqz完成签到,获得积分20
1秒前
john发布了新的文献求助20
1秒前
QQ发布了新的文献求助10
2秒前
2秒前
狂野萤完成签到,获得积分0
3秒前
pawn发布了新的文献求助10
3秒前
清爽胖飞发布了新的文献求助10
3秒前
多肽专家完成签到,获得积分10
4秒前
5秒前
活泼的花生完成签到,获得积分10
5秒前
CipherSage应助jun采纳,获得10
5秒前
www完成签到 ,获得积分10
5秒前
蒙开心完成签到 ,获得积分10
5秒前
郭聪慧发布了新的文献求助10
6秒前
传奇3应助忧心的不二采纳,获得10
6秒前
huazhangchina发布了新的文献求助30
7秒前
三新荞完成签到,获得积分10
7秒前
elysia发布了新的文献求助10
7秒前
小二郎应助leslie采纳,获得10
8秒前
陈有游发布了新的文献求助10
8秒前
8秒前
思源应助hhchhcmxhf采纳,获得10
8秒前
9秒前
优美元瑶完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
12秒前
QQ完成签到,获得积分10
12秒前
蓝胖胖蓝完成签到,获得积分10
12秒前
jun完成签到,获得积分10
12秒前
theseus完成签到,获得积分10
13秒前
13秒前
烂漫成仁完成签到,获得积分10
13秒前
14秒前
孤独曲奇完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188