Cross-domain Recommendation via Dual Adversarial Adaptation

计算机科学 对抗制 对偶(语法数字) 领域(数学分析) 适应(眼睛) 域适应 人工智能 心理学 艺术 神经科学 文学类 数学分析 数学 分类器(UML)
作者
Hongzu Su,Jingjing Li,Zhekai Du,Lei Zhu,Ke Lü,Hengtao Shen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (3): 1-26 被引量:4
标识
DOI:10.1145/3632524
摘要

Data scarcity is a perpetual challenge of recommendation systems, and researchers have proposed a variety of cross-domain recommendation methods to alleviate the problem of data scarcity in target domains. However, in many real-world cross-domain recommendation systems, the source domain and the target domain are sampled from different data distributions, which obstructs the cross-domain knowledge transfer. In this article, we propose to specifically align the data distributions between the source domain and the target domain to alleviate imbalanced sample distribution and thus challenge the data scarcity issue in the target domain. Technically, our proposed approach builds a dual adversarial adaptation (DAA) framework to adversarially train the target model together with a pre-trained source model. Two domain discriminators play the two-player minmax game with the target model and guide the target model to learn reliable domain-invariant features that can be transferred across domains. At the same time, the target model is calibrated to learn domain-specific information of the target domain. In addition, we formulate our approach as a plug-and-play module to boost existing recommendation systems. We apply the proposed method to address the issues of insufficient data and imbalanced sample distribution in real-world Click-through Rate/Conversion Rate predictions on two large-scale industrial datasets. We evaluate the proposed method in scenarios with and without overlapping users/items, and extensive experiments verify that the proposed method is able to significantly improve the prediction performance on the target domain. For instance, our method can boost PLE with a performance improvement of 15.4% in terms of Area Under Curve compared with single-domain PLE on our private game dataset. In addition, our method is able to surpass single-domain MMoE by 6.85% on the public datasets. Code: https://github.com/TL-UESTC/DAA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx发布了新的文献求助10
1秒前
1秒前
领导范儿应助煎饼采纳,获得10
2秒前
GUESSSS发布了新的文献求助10
2秒前
3秒前
小果冻梨发布了新的文献求助10
4秒前
李健应助azz采纳,获得10
4秒前
刘仁轨发布了新的文献求助10
4秒前
老弟需要帮助完成签到,获得积分10
5秒前
大个应助七七采纳,获得10
5秒前
5秒前
英吉利25发布了新的文献求助10
6秒前
哈哈哈哈发布了新的文献求助10
6秒前
7秒前
Ran完成签到,获得积分20
7秒前
画清风完成签到,获得积分10
7秒前
隐形曼青应助袁气小笼包采纳,获得10
8秒前
8秒前
欢喜蛋挞完成签到,获得积分10
8秒前
9秒前
9秒前
李家人应助要减肥含灵采纳,获得10
10秒前
huahua发布了新的文献求助10
12秒前
Cheng发布了新的文献求助30
12秒前
小果冻梨完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
风趣的寻绿完成签到,获得积分10
13秒前
Research完成签到 ,获得积分10
13秒前
AI_S发布了新的文献求助10
13秒前
炸胡娃娃发布了新的文献求助10
13秒前
Anna发布了新的文献求助10
13秒前
Orange应助拼搏马里奥采纳,获得10
14秒前
李健的粉丝团团长应助Ran采纳,获得10
14秒前
小马甲应助tangzanwayne采纳,获得10
14秒前
123mmmm完成签到,获得积分10
15秒前
魏头头完成签到 ,获得积分10
15秒前
16秒前
梅子完成签到 ,获得积分10
16秒前
yao chen发布了新的文献求助10
16秒前
wjx发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224