已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deterministic Genetic Barcoding for Multiplexed Behavioral and Single-Cell Transcriptomic Studies

DNA条形码 转录组 多路复用 计算生物学 计算机科学 进化生物学 生物 条形码 遗传学 基因 电信 基因表达 操作系统
作者
Jorge Blanco Mendana,Margaret Donovan,Lindsey Gengelbach O'Brien,Benjamin Auch,John Garbe,Daryl M. Gohl
出处
期刊:eLife [eLife Sciences Publications, Ltd.]
卷期号:12
标识
DOI:10.7554/elife.88334
摘要

Advances in single-cell sequencing technologies have provided novel insights into the dynamics of gene expression and cellular heterogeneity within tissues and have enabled the construction of transcriptomic cell atlases. However, linking anatomical information to transcriptomic data and positively identifying the cell types that correspond to gene expression clusters in single-cell sequencing data sets remains a challenge. We describe a straightforward genetic barcoding approach that takes advantage of the powerful genetic tools in Drosophila to allow in vivo tagging of defined cell populations. This method, called Ta rgeted G enetically- E ncoded M ultiplexing (TaG-EM), involves inserting a DNA barcode just upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct so that the barcode sequence can be read out during single-cell sequencing, labeling a cell population of interest. By creating many such independently barcoded fly strains, TaG-EM enables positive identification of cell types in cell atlas projects, identification of multiplet droplets, and barcoding of experimental timepoints, conditions, and replicates. Furthermore, we demonstrate that TaG-EM barcodes can be read out using next-generation sequencing to facilitate population-scale behavioral measurements. Thus, TaG-EM has the potential to enable large-scale behavioral screens in addition to improving the ability to multiplex and reliably annotate single-cell transcriptomic experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助swordlee采纳,获得10
刚刚
1秒前
专注的青发布了新的文献求助10
2秒前
12rcli完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
ShellyHan完成签到,获得积分10
5秒前
PENGDOCTOR发布了新的文献求助10
7秒前
畅快问蕊发布了新的文献求助10
8秒前
Akim应助楚江南采纳,获得10
8秒前
9秒前
10秒前
11秒前
11秒前
JamesPei应助温柔的迎荷采纳,获得10
13秒前
慕青应助ykmykm采纳,获得10
15秒前
豌豆发布了新的文献求助10
15秒前
Christian完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
20秒前
PENGDOCTOR完成签到,获得积分10
20秒前
20秒前
楚江南发布了新的文献求助10
21秒前
21秒前
Lucas应助畅快问蕊采纳,获得10
22秒前
23秒前
23秒前
受伤凌蝶发布了新的文献求助10
23秒前
24秒前
lll完成签到,获得积分10
25秒前
YY完成签到,获得积分20
25秒前
lxd发布了新的文献求助20
26秒前
YuCloudy发布了新的文献求助10
27秒前
27秒前
踢球的孩子完成签到 ,获得积分10
28秒前
28秒前
YY发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555423
求助须知:如何正确求助?哪些是违规求助? 3131069
关于积分的说明 9389939
捐赠科研通 2830532
什么是DOI,文献DOI怎么找? 1556087
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750