An enhanced K-SVD denoising algorithm based on adaptive soft-threshold shrinkage for fault detection of wind turbine rolling bearing

脉冲(物理) 涡轮机 计算机科学 方位(导航) 降噪 算法 稀疏逼近 收缩率 杂乱 模式识别(心理学) 控制理论(社会学) 人工智能 工程类 雷达 物理 机械工程 电信 控制(管理) 量子力学 机器学习
作者
Jimeng Li,Ze Wang,Qiang Li,Jinfeng Zhang
出处
期刊:Isa Transactions [Elsevier]
卷期号:142: 454-464 被引量:7
标识
DOI:10.1016/j.isatra.2023.07.042
摘要

Due to nonstationary operating conditions of wind turbines and surrounding harsh working environments, the impulse features induced by bearing faults are always overwhelmed by heavy noise, which brings challenges to accurately detect rolling bearing faults. Sparse representation exhibits excellent performance in nonstationary signal analysis, but it is closely bound up with the degree of similarity between the atoms in a dictionary and signals. Therefore, this paper investigates an enhanced K-SVD denoising method based on adaptive soft-threshold shrinkage to achieve high-precision extraction of impulse signals, and applies it to fault detection of generator bearing of wind turbines. An adaptive sparse coding shrinkage soft-threshold denoising is first proposed to remove noise and harmonic interference in the residual term of dictionary updating, so that the updated atoms show obvious impact characteristics. Furthermore, a soft-threshold shrinkage function with adaptive threshold is designed to further suppress clutter in atoms of the learned dictionary, so as to obtain an optimized dictionary for recovering impulse signals. Two actual engineering cases are selected for analysis, and the envelope spectrum correlation kurtosis corresponding to the results obtained by the proposed method is significantly higher than that of other comparison methods, thus verifying its superiority in detecting rolling bearing faults.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shkknx完成签到,获得积分10
1秒前
1秒前
1秒前
向日葵完成签到,获得积分10
1秒前
无极微光应助yingluo采纳,获得20
1秒前
简单宝莹完成签到,获得积分10
2秒前
太叔笑萍发布了新的文献求助10
2秒前
春夏秋冬发布了新的文献求助10
2秒前
PDA完成签到,获得积分10
2秒前
nssm发布了新的文献求助10
2秒前
2秒前
山语完成签到,获得积分10
2秒前
2秒前
科研通AI6应助细心幻香采纳,获得10
2秒前
LewisAcid应助细心幻香采纳,获得10
3秒前
Petrichor发布了新的文献求助10
3秒前
3秒前
充电宝应助开朗指甲油采纳,获得30
4秒前
宓天问完成签到,获得积分10
4秒前
4秒前
耿耿于怀完成签到,获得积分10
4秒前
wenchong完成签到,获得积分10
4秒前
LewisAcid应助杨一乐采纳,获得10
4秒前
4秒前
刘松发布了新的文献求助10
4秒前
奶昔发布了新的文献求助10
5秒前
烟花应助光亮灯泡采纳,获得10
5秒前
5秒前
qingyu_Lin123完成签到,获得积分20
5秒前
David完成签到,获得积分10
6秒前
全球完成签到,获得积分20
6秒前
33完成签到 ,获得积分10
6秒前
6秒前
刘思彤发布了新的文献求助10
6秒前
英吉利25发布了新的文献求助10
7秒前
胖大海完成签到,获得积分10
7秒前
兴奋背包完成签到,获得积分10
7秒前
立食劳栖完成签到,获得积分10
7秒前
李子谦发布了新的文献求助30
8秒前
云月完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585741
求助须知:如何正确求助?哪些是违规求助? 4669361
关于积分的说明 14776911
捐赠科研通 4618356
什么是DOI,文献DOI怎么找? 2530650
邀请新用户注册赠送积分活动 1499380
关于科研通互助平台的介绍 1467750