已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Photovoltaic arrays fault diagnosis based on an improved dilated convolutional neural network with feature-enhancement

计算机科学 光伏系统 冗余(工程) 可操作性 断层(地质) 卷积神经网络 卷积(计算机科学) 数据冗余 特征提取 模式识别(心理学) 人工智能 人工神经网络 数据挖掘 实时计算 工程类 软件工程 地震学 地质学 电气工程 操作系统
作者
Bin Gong,Aimin An,Yaoke Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015011-015011 被引量:7
标识
DOI:10.1088/1361-6501/acfba0
摘要

Abstract Photovoltaic (PV) arrays are installed outdoors and prone to abnormalities and various faults under harsh natural conditions, reducing power conversion efficiency and the life of the PV modules, and even causing electric shock and fire. Current fault diagnosis methods are unable to accurately identify and locate faults in PV arrays in PV power systems, leading to increased operation and maintenance costs. Therefore, the feature-enhancement improved dilated convolutional neural network (CNN) is proposed for fault diagnosis of PV arrays in this paper. Firstly, aim at the problem of information loss due to data structure and spatial hierarchy within the traditional CNN, and the loss of data after down-sampling, which leads to the inability to reconstruct information, a dilated convolution is introduced to obtain a larger perceptual field while reducing the computational effort. Meanwhile, the adaptive dual domain soft threshold group convolution attention module is proposed to enhance the essential features of faults and reduce the information redundancy given the ambiguity and blindness of the feature data in PV array fault extraction. Finally, the model performance of the proposed model is validated and the operability and effectiveness of the proposed method are verified experimentally. The diagnostic results show that the average diagnostic accuracy of the proposed model is 98.95% compared with other diagnostic models, with better diagnostic accuracy and more stable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助陈思思采纳,获得10
3秒前
3秒前
4秒前
科研通AI5应助英俊溪灵采纳,获得10
6秒前
6秒前
Libra发布了新的文献求助10
7秒前
飞逝的快乐时光完成签到 ,获得积分10
7秒前
9秒前
狂野傲南发布了新的文献求助10
11秒前
咪咪发布了新的文献求助10
11秒前
lixuerui完成签到,获得积分10
12秒前
16秒前
17秒前
20秒前
小北完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
杨然完成签到 ,获得积分10
21秒前
华仔应助syx采纳,获得10
21秒前
陈思思发布了新的文献求助10
22秒前
nobody完成签到 ,获得积分10
22秒前
wyr525完成签到,获得积分10
23秒前
Jia发布了新的文献求助10
23秒前
敏感草丛完成签到,获得积分20
24秒前
wyr525发布了新的文献求助10
25秒前
野性的小松鼠完成签到 ,获得积分10
26秒前
星辰大海应助Libra采纳,获得10
28秒前
沉静方盒发布了新的文献求助10
29秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
大个应助科研通管家采纳,获得10
33秒前
小马甲应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
33秒前
chunjuan应助科研通管家采纳,获得50
33秒前
ipcy完成签到,获得积分10
34秒前
所所应助正直的友容采纳,获得10
34秒前
SciGPT应助消失的岛屿采纳,获得10
34秒前
Jia完成签到,获得积分20
35秒前
W.X.发布了新的文献求助10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733275
求助须知:如何正确求助?哪些是违规求助? 3277475
关于积分的说明 10002708
捐赠科研通 2993338
什么是DOI,文献DOI怎么找? 1642645
邀请新用户注册赠送积分活动 780574
科研通“疑难数据库(出版商)”最低求助积分说明 748892