亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Photovoltaic arrays fault diagnosis based on an improved dilated convolutional neural network with feature-enhancement

计算机科学 光伏系统 冗余(工程) 可操作性 断层(地质) 卷积神经网络 卷积(计算机科学) 数据冗余 特征提取 模式识别(心理学) 人工智能 人工神经网络 数据挖掘 实时计算 工程类 软件工程 地震学 地质学 电气工程 操作系统
作者
Bin Gong,Aimin An,Yaoke Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015011-015011 被引量:7
标识
DOI:10.1088/1361-6501/acfba0
摘要

Abstract Photovoltaic (PV) arrays are installed outdoors and prone to abnormalities and various faults under harsh natural conditions, reducing power conversion efficiency and the life of the PV modules, and even causing electric shock and fire. Current fault diagnosis methods are unable to accurately identify and locate faults in PV arrays in PV power systems, leading to increased operation and maintenance costs. Therefore, the feature-enhancement improved dilated convolutional neural network (CNN) is proposed for fault diagnosis of PV arrays in this paper. Firstly, aim at the problem of information loss due to data structure and spatial hierarchy within the traditional CNN, and the loss of data after down-sampling, which leads to the inability to reconstruct information, a dilated convolution is introduced to obtain a larger perceptual field while reducing the computational effort. Meanwhile, the adaptive dual domain soft threshold group convolution attention module is proposed to enhance the essential features of faults and reduce the information redundancy given the ambiguity and blindness of the feature data in PV array fault extraction. Finally, the model performance of the proposed model is validated and the operability and effectiveness of the proposed method are verified experimentally. The diagnostic results show that the average diagnostic accuracy of the proposed model is 98.95% compared with other diagnostic models, with better diagnostic accuracy and more stable diagnostic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
15秒前
申腾达发布了新的文献求助10
18秒前
WWW发布了新的文献求助10
22秒前
WWW完成签到,获得积分10
34秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
开拖拉机的芍药完成签到 ,获得积分10
46秒前
ROMANTIC完成签到 ,获得积分10
51秒前
52秒前
Lucas应助开朗灵萱采纳,获得10
55秒前
YUE66完成签到,获得积分10
1分钟前
1分钟前
开朗灵萱发布了新的文献求助10
1分钟前
情怀应助奋斗的马里奥采纳,获得10
1分钟前
传奇3应助开朗灵萱采纳,获得10
1分钟前
Richard完成签到,获得积分10
1分钟前
monica完成签到 ,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
orixero应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
浮岫发布了新的文献求助10
2分钟前
浮岫完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
rebeycca发布了新的文献求助10
2分钟前
奋斗的马里奥完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lei完成签到,获得积分20
3分钟前
跳跃紫真完成签到,获得积分10
3分钟前
CodeCraft应助lei采纳,获得10
4分钟前
大玉124完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439