Serum proteomic biomarkers diagnostic of knee osteoarthritis

医学 接收机工作特性 骨关节炎 内科学 曲线下面积 置信区间 体质指数 逻辑回归 胃肠病学 肿瘤科 病理 替代医学
作者
Virginia B. Kraus,Alexander Reed,Erik J. Soderblom,Yvonne M. Golightly,Amanda E. Nelson,Yi‐Ju Li
出处
期刊:Osteoarthritis and Cartilage [Elsevier]
卷期号:32 (3): 329-337 被引量:4
标识
DOI:10.1016/j.joca.2023.09.007
摘要

Objective To better understand the pathogenesis of knee osteoarthritis (OA) through identification of serum diagnostics. Design We conducted multiple reaction monitoring mass spectrometry analysis of 107 peptides in baseline sera of two cohorts: the Foundation for National Institutes of Health (NIH) (n = 596 Kellgren-Lawrence (KL) grade 1–3 knee OA participants); and the Johnston County Osteoarthritis Project (n = 127 multi-joint controls free of radiographic OA of the hands, hips, knees (bilateral KL=0), and spine). Data were split into (70%) training and (30%) testing sets. Diagnostic peptide and clinical data predictors were selected by random forest (RF); selection was based on association (p < 0.05) with OA status in multivariable logistic regression models. Model performance was based on area under the curve (AUC) of receiver operating characteristic (ROC) and precision-recall (PR) curves. Results RF selected 23 peptides (19 proteins) and body mass index (BMI) as diagnostic of OA. BMI weakly diagnosed OA (ROC-AUC 0.57, PR-AUC 0.812) and only symptomatic OA cases. ACTG was the strongest univariable predictor (ROC-AUC 0.705, PR-AUC 0.897). The final model (8 serum peptides) was highly diagnostic (ROC-AUC 0.833, 95% confidence interval [CI] 0.751, 0.905; PR-AUC 0.929, 95% CI 0.876, 0.973) in the testing set and equally diagnostic of non-symptomatic and symptomatic cases (AUCs 0.830–0.835), and not significantly improved with addition of BMI. The STRING database predicted multiple high confidence interactions of the 19 diagnostic OA proteins. Conclusions No more than 8 serum protein biomarkers were required to discriminate knee OA from non-OA. These biomarkers lend strong support to the involvement and cross-talk of complement and coagulation pathways in the development of OA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
1秒前
wwwzy关注了科研通微信公众号
2秒前
南昌黑人发布了新的文献求助10
3秒前
Ava应助jby采纳,获得10
3秒前
yg发布了新的文献求助10
4秒前
bosco发布了新的文献求助10
5秒前
5秒前
朱珠完成签到,获得积分10
5秒前
立里完成签到,获得积分10
7秒前
10秒前
11秒前
英姑应助科研通管家采纳,获得30
11秒前
慕青应助科研通管家采纳,获得10
11秒前
敬老院N号应助科研通管家采纳,获得20
11秒前
李健应助科研通管家采纳,获得10
11秒前
JiegeSCI发布了新的文献求助10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
12秒前
LAlalal完成签到,获得积分10
12秒前
lilei完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
优美谷兰完成签到,获得积分10
15秒前
16秒前
wwwzy发布了新的文献求助10
16秒前
YMY发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助zxvcbnm采纳,获得10
18秒前
机智寻雪完成签到 ,获得积分10
19秒前
优美谷兰发布了新的文献求助10
19秒前
孤岛发布了新的文献求助10
19秒前
20秒前
Helic发布了新的文献求助10
21秒前
ljyx完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845