结晶
纳米颗粒
材料科学
自组装
化学工程
聚合物
无定形固体
纳米结构
纳米技术
混合材料
结晶学
化学
复合材料
工程类
作者
Afshin Nabiyan,Aswathy N. Muttathukattil,Federico Tomazic,David Pretzel,Ulrich S. Schubert,Michael Engel,Felix H. Schacher
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-09-18
卷期号:17 (21): 21216-21226
标识
DOI:10.1021/acsnano.3c05461
摘要
Nanoparticle self-assembly is an efficient bottom-up strategy for the creation of nanostructures. In a typical approach, ligands are grafted onto the surfaces of nanoparticles to improve the dispersion stability and control interparticle interactions. Ligands then remain secondary and usually are not expected to order significantly during superstructure formation. Here, we investigate how ligands can play a more decisive role in the formation of anisotropic inorganic-organic hybrid materials. We graft poly(2-iso-propyl-2-oxazoline) (PiPrOx) as a crystallizable shell onto SiO2 nanoparticles. By varying the PiPrOx grafting density, both solution stability and nanoparticle aggregation behavior can be controlled. Upon prolonged heating, anisotropic nanostructures form in conjunction with the crystallization of the ligands. Self-assembly of hybrid PiPrOx@SiO2 (shell@core) nanoparticles proceeds in two steps: First, the rapid formation of amorphous aggregates occurs via gelation, mediated by the interaction between nanoparticles through grafted polymer chains. As a second step, slow radial growth of fibers was observed via directional crystallization, governed by the incorporation of crystalline ribbons formed from free polymeric ligands in combination with crystallization of the covalently attached ligand shell. Our work reveals how crystallization-driven self-assembly of ligands can create intricate hybrid nanostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI