SC-SSL: Self-Correcting Collaborative and Contrastive Co-Training Model for Semi-Supervised Medical Image Segmentation

计算机科学 图像分割 人工智能 分割 机器学习 特征学习 背景(考古学) 半监督学习 深度学习 人工神经网络 任务(项目管理) 模式识别(心理学) 古生物学 管理 经济 生物
作者
Juzheng Miao,Si-Ping Zhou,Guangquan Zhou,Kai‐Ni Wang,Meng Yang,Shoujun Zhou,Yang Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1347-1364 被引量:9
标识
DOI:10.1109/tmi.2023.3336534
摘要

Image segmentation achieves significant improvements with deep neural networks at the premise of a large scale of labeled training data, which is laborious to assure in medical image tasks. Recently, semi-supervised learning (SSL) has shown great potential in medical image segmentation. However, the influence of the learning target quality for unlabeled data is usually neglected in these SSL methods. Therefore, this study proposes a novel self-correcting co-training scheme to learn a better target that is more similar to ground-truth labels from collaborative network outputs. Our work has three-fold highlights. First, we advance the learning target generation as a learning task, improving the learning confidence for unannotated data with a self-correcting module. Second, we impose a structure constraint to encourage the shape similarity further between the improved learning target and the collaborative network outputs. Finally, we propose an innovative pixel-wise contrastive learning loss to boost the representation capacity under the guidance of an improved learning target, thus exploring unlabeled data more efficiently with the awareness of semantic context. We have extensively evaluated our method with the state-of-the-art semi-supervised approaches on four public-available datasets, including the ACDC dataset, M&Ms dataset, Pancreas-CT dataset, and Task_07 CT dataset. The experimental results with different labeled-data ratios show our proposed method's superiority over other existing methods, demonstrating its effectiveness in semi-supervised medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
alexzlmmd发布了新的文献求助30
1秒前
ltttyy完成签到,获得积分10
2秒前
3秒前
图图完成签到 ,获得积分10
5秒前
汉堡包应助成就的焦采纳,获得10
10秒前
fagfagsf完成签到,获得积分10
15秒前
小陈完成签到,获得积分10
17秒前
lyw完成签到 ,获得积分10
17秒前
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
可爱的函函应助wwwww采纳,获得10
19秒前
米粒之珠亦放光华完成签到,获得积分20
19秒前
21秒前
qq完成签到 ,获得积分10
24秒前
26秒前
脑洞疼应助毛毛采纳,获得10
28秒前
麻麻薯完成签到 ,获得积分10
36秒前
酷波er应助任性太英采纳,获得10
37秒前
37秒前
38秒前
wwwww发布了新的文献求助10
40秒前
kk发布了新的文献求助10
43秒前
46秒前
顾矜应助靓丽战斗机采纳,获得10
50秒前
33发布了新的文献求助10
51秒前
司徒呀完成签到,获得积分10
51秒前
53秒前
33完成签到,获得积分10
57秒前
司徒呀发布了新的文献求助10
57秒前
任性太英发布了新的文献求助10
57秒前
57秒前
Akim应助吃吃菜菜吧采纳,获得10
1分钟前
马华化完成签到,获得积分0
1分钟前
1分钟前
Yangpc给Yangpc的求助进行了留言
1分钟前
大水发布了新的文献求助10
1分钟前
你是我的唯一完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371130
求助须知:如何正确求助?哪些是违规求助? 2989336
关于积分的说明 8735366
捐赠科研通 2672504
什么是DOI,文献DOI怎么找? 1464014
科研通“疑难数据库(出版商)”最低求助积分说明 677394
邀请新用户注册赠送积分活动 668645