New insights into temperature-induced mechanisms of copper adsorption enhancement on hydroxyapatite-in situ self-doped fluffy bread-like biochar

吸附 生物炭 化学工程 密度泛函理论 化学 热解 材料科学 有机化学 计算化学 工程类
作者
Jia‐Yong Zhang,Xia Xu,Kunquan Li,Yifeng Shen,Yan Xue
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:479: 147657-147657 被引量:5
标识
DOI:10.1016/j.cej.2023.147657
摘要

The utilization of kitchen bones as a renewable resource for biochar production holds significant promise. In this study, three distinct pig-bone-based biochars (PBCs) were synthesized at varying pyrolysis temperatures to investigate the influences of Hydroxyapatite (HAP) self-doped on crystal morphology, formation of functional active sites, and Cu2+ efficient adsorption. The results showed that low-temperature-induced alterations in HAP crystal morphology led to the formation of a highly active “fluffy bread-like” structure (FBS) in PBC-500, exhibiting exceptional Cu2+ adsorption capacity (71.60 mg·L−1) with an 86% adsorption achieved within 15 min. Notably, PBC-500 demonstrated a unit-specific surface area adsorption capacity for Cu2+, which was 1.52 and 1.19 times higher than the nano-wire-like PBC-700 and the nano-spherical-like PBC-900, respectively. Modern Spectroscopic analyses established the presence of a range of active centers (–OH, –CONH2, -PO43-) on PBC-500′s FBS carrier along with its highly efficient adsorption mechanism for Cu2+. These findings were strongly supported by electrostatic potentials and the frontier orbital theory of Quantum DFT methods, providing insights into the crucial chemical mechanisms by which active sites, such as phosphorus, nitrogen, and oxygen centers, enhance Cu2+ adsorption. Furthermore, PBC-500 exhibited superior adsorption binding energy and chemical reactivity, retaining high activity across a range of pH levels, inorganic ions, and organic matter. This study establishes empirical and theoretical foundations for the efficient utilization of kitchen pig bones as a sustainable resource and the eco-friendly synthesis of high-performance self-doped biochar, contributing to sustainable material innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ATREE完成签到,获得积分10
1秒前
无辜念文完成签到,获得积分10
1秒前
mumu完成签到,获得积分10
2秒前
科研通AI2S应助笨笨烨华采纳,获得10
2秒前
2秒前
2秒前
zxh发布了新的文献求助10
3秒前
FoxLY发布了新的文献求助10
3秒前
74726发布了新的文献求助10
4秒前
青衣北风发布了新的文献求助10
4秒前
liyun发布了新的文献求助10
4秒前
有机发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
SciGPT应助渴望蓝天采纳,获得10
7秒前
wjw完成签到,获得积分10
7秒前
搬砖大法好完成签到,获得积分10
7秒前
很牛的ID发布了新的文献求助10
7秒前
Joshua完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
HEIKU应助zlkdys采纳,获得10
10秒前
852应助zfy采纳,获得10
11秒前
jzhou88完成签到,获得积分10
11秒前
tsttst完成签到,获得积分10
11秒前
赘婿应助silence采纳,获得10
11秒前
lf-leo发布了新的文献求助10
11秒前
深情安青应助王白菜采纳,获得10
11秒前
王金金发布了新的文献求助10
11秒前
自觉子默完成签到,获得积分10
12秒前
12秒前
充电宝应助婕婕采纳,获得10
12秒前
12秒前
是的发放完成签到,获得积分20
13秒前
13秒前
yanjiawen发布了新的文献求助20
13秒前
无奈曼云完成签到,获得积分10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Non-Crystalline Solids 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388805
求助须知:如何正确求助?哪些是违规求助? 3001103
关于积分的说明 8795432
捐赠科研通 2687449
什么是DOI,文献DOI怎么找? 1472033
科研通“疑难数据库(出版商)”最低求助积分说明 680775
邀请新用户注册赠送积分活动 673430