已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mutation of PUB17 in tomato leads to reduced susceptibility to necrotrophic fungi

生物 灰葡萄孢菌 遗传学 基因 突变体 人口 植物 人口学 社会学
作者
Miguel Ramirez Gaona,A. van Tuinen,Danny Schipper,Akihito Kano,Pieter J. Wolters,Richard G. F. Visser,J.A.L. van Kan,Anne‐Marie A. Wolters,Yuling Bai
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:21 (11): 2157-2159 被引量:3
标识
DOI:10.1111/pbi.14127
摘要

Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production. There is no report of any single resistance (R) gene that can provide dominant resistance against necrotrophic fungi (Davis et al., 2009; Finkers et al., 2007). In this study, we demonstrate that breeding tomato for broad-spectrum resistance towards necrotrophic fungi can be achieved by editing host susceptibility (S) genes. Screening a tomato Micro-Tom (MT) EMS population (Yan et al., 2021) we identified mutant M2042 showing a 20%–30% reduction in lesion diameter after B. cinerea infection when compared to the wild-type MT control in a detached leaf assay (DLA). A bulk segregant analysis and whole genome sequencing (BSA-seq) approach was applied in the F2 population derived from the cross of M2042 and Moneymaker (MM, susceptible to B. cinerea; Methods S1, Figures S1 and S2). Two potential non-synonymous mutations were identified. The first mutation (A → T SNP) was at position 1477 of the coding region of gene Solyc02g072080 resulting in a premature stop codon R493* (Figure 1a). This gene is the tomato orthologue of PUB17, a conserved U-box-containing E3 ubiquitin ligase (Trenner et al., 2022). The second mutation (G → A SNP) occurred in exon 5 of gene Solyc02g078920 resulting in an amino acid change G158D. This gene encodes an S1/P1 nuclease. Of the two candidate genes, only the expression of PUB17 was altered in the mutant at 24 and 48 h after Botrytis inoculation (Figure 1b). Further fine mapping showed that the SNP in PUB17 co-segregated with the resistance (Figure 1c). To confirm that the PUB17 gene is an S gene to B. cinerea, knock-down and out transformants were produced using RNAi and CRISPR (Table S1). In both DLA and stem assays, significantly reduced susceptibility was observed in T3 well-silenced plants of three independent RNAi transformants (Figures S3 and S4) generated by transforming MM with RNAi constructs (Figure 1a). For CRISPR analysis, a construct with 4 sgRNAs targeting the different protein domains were made (Figure 1a) to transform MM. Homozygous mutant T3 progeny could be obtained from T1 transformants 7 (mutant allele 1 and 2) and 36 (mutant allele 3 and 4; Figure 1a, Figures S5 and S6). For each mutant allele, two T3 families were tested with B. cinerea in both stem assay and a DLA. All T3 families exhibited significantly lower disease severity compared with MM and CRISPR T2 family TV33 containing wild-type PUB17 alleles (Figure 1d, Figure S4). A multiple sequence alignment of the predicted PUB17 proteins (Figure S7) revealed that mutations of all the mutant alleles led to partial deletion of the Armadillo repeats (ARM; Figure 1e). Additional to B. cinerea, the pub17 mutants (both EMS and CRISPR) showed significantly reduced lesion diameters after A. solani infection, when compared to the corresponding controls (MM or MT; Figure 1f). Meanwhile, no increased susceptibility was observed in these pub17 mutants when tested with obligate biotrophic tomato powdery mildew pathogen Pseudoidium neolycopersici (Figure S8). The original EMS-mutant plant M2042 had slightly smaller leaves than wild-type MT, and the leaves were slightly wrinkled. To assess the breeding value of the EMS pub17 mutation, we introgressed the EMS-mutant allele into different tomato breeding lines (Figure S9). Results demonstrated that occurrence of autonecrosis of pub17 mutants depends on the genetic background. We succeeded in producing F1 hybrids carrying homozygous pub17 alleles with a plant phenotype and fruit setting indistinguishable from the F1 without the pub17 mutation. In this study, we report for the first time that SlPUB17 operates as an S gene during plant interaction with necrotrophic pathogens. The Arabidopsis PUB family consists of 64 PUB genes classified into seven classes and their encoded proteins contain a highly conserved U-box domain along with various additional domains (Trenner et al., 2022). PUB17 belongs to Class V containing a U-box N-terminal domain (UND) at the N-terminus and ARM repeats at the C-terminus (Figure 1a). The individual EMS- and CRISPR-induced mutations resulted in the loss of multiple ARM repeats for all mutant alleles (Figure 1e). ARM repeats participate in protein–protein interactions (Samuel et al., 2006). The loss of these repeats would hamper the interaction of proteins associated with PUB17 and consequently the ubiquitination of proteins targeted by PUB17. Previous studies on PUB17 homologues of Arabidopsis thaliana, Nicotiana tabacum, potato and cotton showed that PUB17 is a positive regulator of immunity against different diseases caused by biotrophic and hemibiotrophic pathogens, such as Cladosporium fulvum, Phytophthora infestans and Verticillium dahliae (Ni et al., 2010; Tian et al., 2007; Yang et al., 2006; Zhang et al., 2016). In contrast, our results revealed a role of PUB17 as an S gene for necrotrophic pathogens by acting as a negative regulator of immunity against B. cinerea and A. solani. Given that the SlPUB17 mutants exhibit lower susceptibility to necrotrophic pathogens manifested as smaller lesion diameters, we deduce that PUB17 operates as a positive regulator of programmed cell death (PCD). The role of PUB17 in the PCD pathway has yet to be confirmed, since the specific target(s) for degradation by the ubiquitin ligase PUB17 remain unknown. Yet, as several necrotrophic pathogens rely on (programmed) cell death to facilitate growth, it is plausible to propose that the resistance observed in PUB17 mutants to Botrytis and Alternaria could be linked to interference with PCD. Since S genes are shown to be conserved across different plant species (Koseoglu et al., 2022), we expect that the identified PUB17 gene might be explored in a range of crops for resistance to B. cinerea and A. solani by induced mutations via mutagenesis, RNAi (easy for polypoid crops) and especially gene-editing with CRISPR. This research was financially supported by grants from Foundation Topconsortium voor Kennis en Innovatie (TKI) Horticulture & Starting Materials projects EZ-2012-07 and TU-18015. We thank Fien Meijer-Dekens and Bertus van der Laan for taking care of the plants in the greenhouse. Thanks also to Alejandro Thérèse Navarro for his guidance in R programming. None declared. YB, AMAW, JALvK and RGFV conceived the study. AvT performed the screening of the EMS population. MRG, DS, AvT and PJW performed the experiments. PJW and JALvK provided disease testing resources and protocols. MRG, AMAW and YB analysed the results. AK participated in advanced material production. MRG wrote the manuscript with input from all co-authors. The data used to support the findings of this study are available in the main text and Supporting information of this article. Methods S1 Materials and methods. Figure S1 Pedigree of M2042 EMS mutant. Figure S2 Results from the BSA-seq analysis. Figure S3 Analysis of PUB17 RNAi transformants. Figure S4 Botrytris cinerea stem assay results of PUB17 transformants. Figure S5 Analysis of PUB17 CRISPR transformants. Figure S6 Multiple genomic sequence alignment of Solanum lycopersicum wild-type and mutant PUB17 alleles. Figure S7 Multiple protein sequence alignment of Solanum lycopersicum wild-type and mutant PUB17 alleles. Figure S8 Powdery mildew disease scoring results of PUB17 CRISPR mutants. Figure S9 EMS-mutant pub17 pre-breeding results. Table S1 List of primers. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小蘑菇应助千里采纳,获得10
2秒前
向阳而生完成签到 ,获得积分10
3秒前
乐乐应助轻松黄豆采纳,获得10
4秒前
Akim应助白杨木影子被拉长采纳,获得30
5秒前
赘婿应助清茶一抹采纳,获得10
5秒前
hao发布了新的文献求助10
6秒前
CipherSage应助迅速的丑采纳,获得10
7秒前
温柔安南发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
搜集达人应助水星采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
科目三应助科研通管家采纳,获得10
12秒前
欢喜方盒完成签到,获得积分10
12秒前
12秒前
在水一方应助123采纳,获得10
15秒前
赘婿应助Mito2009采纳,获得10
16秒前
Oay发布了新的文献求助10
16秒前
zhe完成签到,获得积分10
17秒前
皮皮虾发布了新的文献求助10
17秒前
CipherSage应助笨笨芯采纳,获得10
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
24秒前
25秒前
彬彬有李发布了新的文献求助10
25秒前
小魏发布了新的文献求助10
26秒前
默默洋葱发布了新的文献求助30
26秒前
圈儿发布了新的文献求助10
29秒前
29秒前
hao完成签到,获得积分20
30秒前
英俊的铭应助gjm采纳,获得10
31秒前
皮皮虾完成签到,获得积分20
31秒前
科研通AI5应助wuhen采纳,获得10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666170
求助须知:如何正确求助?哪些是违规求助? 3225205
关于积分的说明 9761933
捐赠科研通 2935194
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759203
科研通“疑难数据库(出版商)”最低求助积分说明 735153