MedIM: Boost Medical Image Representation via Radiology Report-Guided Masking

遮罩(插图) 计算机科学 判别式 人工智能 分割 图像(数学) 模式识别(心理学) 代表(政治) 计算机视觉 艺术 政治 政治学 法学 视觉艺术
作者
Yutong Xie,Lin Gu,Tatsuya Harada,Jianpeng Zhang,Yong Xia,Qi Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 13-23
标识
DOI:10.1007/978-3-031-43907-0_2
摘要

Masked image modelling (MIM)-based pre-training shows promise in improving image representations with limited annotated data by randomly masking image patches and reconstructing them. However, random masking may not be suitable for medical images due to their unique pathology characteristics. This paper proposes Masked medical Image Modelling (MedIM), a novel approach, to our knowledge, the first research that masks and reconstructs discriminative areas guided by radiological reports, encouraging the network to explore the stronger semantic representations from medical images. We introduce two mutual comprehensive masking strategies, knowledge word-driven masking (KWM) and sentence-driven masking (SDM). KWM uses Medical Subject Headings (MeSH) words unique to radiology reports to identify discriminative cues mapped to MeSH words and guide the mask generation. SDM considers that reports usually have multiple sentences, each of which describes different findings, and therefore integrates sentence-level information to identify discriminative regions for mask generation. MedIM integrates both strategies by simultaneously restoring the images masked by KWM and SDM for a more robust and representative medical visual representation. Our extensive experiments on various downstream tasks covering multi-label/class image classification, medical image segmentation, and medical image-text analysis, demonstrate that MedIM with report-guided masking achieves competitive performance. Our method substantially outperforms ImageNet pre-training, MIM-based pre-training, and medical image-report pre-training counterparts. Codes are available at https://github.com/YtongXie/MedIM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶子发布了新的文献求助10
1秒前
orangel完成签到,获得积分10
2秒前
半壶月色半边天完成签到 ,获得积分10
3秒前
tmpstlml发布了新的文献求助10
3秒前
4秒前
4秒前
不安饼干完成签到 ,获得积分10
6秒前
活泼的飞鸟完成签到,获得积分10
6秒前
7秒前
xuyun发布了新的文献求助10
7秒前
7秒前
zzcres完成签到,获得积分10
9秒前
eeeee完成签到 ,获得积分10
9秒前
乐观德地完成签到,获得积分10
10秒前
大个应助yf_zhu采纳,获得10
10秒前
llk发布了新的文献求助10
11秒前
一只大肥猫完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
13秒前
13秒前
科研通AI5应助GGG采纳,获得10
14秒前
14秒前
16秒前
Ann发布了新的文献求助20
16秒前
16秒前
buno应助duxinyue采纳,获得10
16秒前
xlj发布了新的文献求助10
17秒前
17秒前
可爱的函函应助zhen采纳,获得10
18秒前
研友_VZG7GZ应助dingdong采纳,获得10
19秒前
19秒前
李成恩完成签到 ,获得积分10
20秒前
心碎的黄焖鸡完成签到 ,获得积分10
20秒前
琪琪扬扬发布了新的文献求助10
21秒前
22秒前
22秒前
宗磬完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808