MedIM: Boost Medical Image Representation via Radiology Report-Guided Masking

遮罩(插图) 计算机科学 判别式 人工智能 分割 图像(数学) 模式识别(心理学) 代表(政治) 计算机视觉 艺术 政治 政治学 法学 视觉艺术
作者
Yutong Xie,Lin Gu,Tatsuya Harada,Jianpeng Zhang,Yong Xia,Qi Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 13-23 被引量:3
标识
DOI:10.1007/978-3-031-43907-0_2
摘要

Masked image modelling (MIM)-based pre-training shows promise in improving image representations with limited annotated data by randomly masking image patches and reconstructing them. However, random masking may not be suitable for medical images due to their unique pathology characteristics. This paper proposes Masked medical Image Modelling (MedIM), a novel approach, to our knowledge, the first research that masks and reconstructs discriminative areas guided by radiological reports, encouraging the network to explore the stronger semantic representations from medical images. We introduce two mutual comprehensive masking strategies, knowledge word-driven masking (KWM) and sentence-driven masking (SDM). KWM uses Medical Subject Headings (MeSH) words unique to radiology reports to identify discriminative cues mapped to MeSH words and guide the mask generation. SDM considers that reports usually have multiple sentences, each of which describes different findings, and therefore integrates sentence-level information to identify discriminative regions for mask generation. MedIM integrates both strategies by simultaneously restoring the images masked by KWM and SDM for a more robust and representative medical visual representation. Our extensive experiments on various downstream tasks covering multi-label/class image classification, medical image segmentation, and medical image-text analysis, demonstrate that MedIM with report-guided masking achieves competitive performance. Our method substantially outperforms ImageNet pre-training, MIM-based pre-training, and medical image-report pre-training counterparts. Codes are available at https://github.com/YtongXie/MedIM .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
李白完成签到,获得积分10
3秒前
风吹阔叶发布了新的文献求助30
3秒前
3秒前
4秒前
qing发布了新的文献求助30
4秒前
隐形小鸽子完成签到,获得积分20
4秒前
4秒前
文艺的青旋完成签到 ,获得积分10
5秒前
善学以致用应助sunshine采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
大模型应助mao采纳,获得10
6秒前
sterben完成签到,获得积分10
8秒前
安雯完成签到 ,获得积分10
8秒前
xiaokezhang发布了新的文献求助10
10秒前
10秒前
义气的水蓝完成签到 ,获得积分10
11秒前
4.8关闭了4.8文献求助
12秒前
lin发布了新的文献求助10
15秒前
顾矜应助盲点采纳,获得10
15秒前
16秒前
16秒前
haoooooooooooooo应助LSH970829采纳,获得10
17秒前
搜集达人应助求知的周采纳,获得30
17秒前
17秒前
研友_ZlqeD8完成签到,获得积分10
17秒前
17秒前
17秒前
领导范儿应助juaner采纳,获得10
18秒前
18秒前
19秒前
19秒前
Orange应助聪明新梅采纳,获得10
20秒前
20秒前
Mashiro发布了新的文献求助10
20秒前
Zhang发布了新的文献求助10
20秒前
JM发布了新的文献求助10
20秒前
朱云发布了新的文献求助10
21秒前
杨佳宁发布了新的文献求助10
21秒前
十号发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049