A Dynamic Drilling Sampling Method and Evaluation Model for Big Streaming Data

计算机科学 大数据 采样(信号处理) 数据挖掘 样品(材料) 样本量测定 人工神经网络 航程(航空) 动态数据 算法 人工智能 统计 数据库 工程类 数学 计算机视觉 化学 滤波器(信号处理) 色谱法 航空航天工程
作者
Zhaohui Zhang,Pei Zhang,Peng Zhang,Fujuan Xu,Chaochao Hu,Pengwei Wang
出处
期刊:International Journal of Software Engineering and Knowledge Engineering [World Scientific]
卷期号:33 (11n12): 1725-1748
标识
DOI:10.1142/s0218194023410036
摘要

The big data sampling method for real-time and high-speed streaming data is prone to lose the value and information of a large amount of discrete data, and it is not easy to make an efficient and accurate evaluation of the value characteristics of streaming data. The SDSLA sampling method based on mineral drilling exploration can evaluate the valuable information of streaming data containing many discrete data in real-time, but when the range of discrete data is irregular, it has low sampling accuracy for discrete data. Based on the SDSLA algorithm, we propose a dynamic drilling sampling method SDDS, which takes well as the analysis unit, dynamically changes the size and position of the well, and accurately locates the position and range of discrete data. A new model SDVEM is further proposed for data valuation, which evaluates the sample set from discrete, centralized, and overall dimensions. Experiments show that compared with the SDSLA algorithm, the sample sampled by the SDDS algorithm has higher evaluation accuracy, and the probability distribution of the sample is closer to the original streaming data, with the AOCV indicator being nearly 10% higher. In addition, the SDDS algorithm can achieve over 90% accuracy, recall, and F1 score for training and testing neural networks with small sampling rates, all of which are higher than the SDSLA algorithm. In summary, the SDDS algorithm not only accurately evaluates the value characteristics of streaming data but also facilitates the training of neural network models, which has important research significance in big data estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悦耳迎蕾完成签到,获得积分10
3秒前
科研通AI2S应助此然采纳,获得10
4秒前
nt1119发布了新的文献求助10
4秒前
赘婿应助suanquan采纳,获得10
4秒前
舒心傲蕾完成签到,获得积分10
5秒前
想发sci发布了新的文献求助10
7秒前
dandan完成签到 ,获得积分10
7秒前
斯文败类应助bobopoi采纳,获得10
8秒前
慕青应助独特的凝荷采纳,获得10
11秒前
Eternal发布了新的文献求助10
13秒前
13秒前
13秒前
Hello应助云栈出谷采纳,获得10
14秒前
14秒前
15秒前
17秒前
沉迷完成签到,获得积分10
17秒前
18秒前
18秒前
脑洞疼应助受伤灵薇采纳,获得10
18秒前
18秒前
Xu_W卜完成签到,获得积分10
19秒前
19秒前
Sahar发布了新的文献求助10
19秒前
冷傲初夏完成签到,获得积分10
19秒前
zhangzhang发布了新的文献求助30
20秒前
20秒前
ccc完成签到,获得积分10
20秒前
想毕业的小李完成签到,获得积分10
20秒前
受伤访波完成签到,获得积分10
20秒前
xingyi完成签到,获得积分10
21秒前
whisper发布了新的文献求助10
22秒前
Poik完成签到,获得积分10
22秒前
兜哥完成签到 ,获得积分10
23秒前
23秒前
今天你读文献了吗完成签到,获得积分10
23秒前
CYKM完成签到,获得积分10
23秒前
丘比特应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352