A Dynamic Drilling Sampling Method and Evaluation Model for Big Streaming Data

计算机科学 大数据 采样(信号处理) 数据挖掘 样品(材料) 样本量测定 人工神经网络 航程(航空) 动态数据 算法 人工智能 统计 数据库 工程类 数学 计算机视觉 滤波器(信号处理) 色谱法 航空航天工程 化学
作者
Zhaohui Zhang,Pei Zhang,Peng Zhang,Fujuan Xu,Chaochao Hu,Pengwei Wang
出处
期刊:International Journal of Software Engineering and Knowledge Engineering [World Scientific]
卷期号:33 (11n12): 1725-1748
标识
DOI:10.1142/s0218194023410036
摘要

The big data sampling method for real-time and high-speed streaming data is prone to lose the value and information of a large amount of discrete data, and it is not easy to make an efficient and accurate evaluation of the value characteristics of streaming data. The SDSLA sampling method based on mineral drilling exploration can evaluate the valuable information of streaming data containing many discrete data in real-time, but when the range of discrete data is irregular, it has low sampling accuracy for discrete data. Based on the SDSLA algorithm, we propose a dynamic drilling sampling method SDDS, which takes well as the analysis unit, dynamically changes the size and position of the well, and accurately locates the position and range of discrete data. A new model SDVEM is further proposed for data valuation, which evaluates the sample set from discrete, centralized, and overall dimensions. Experiments show that compared with the SDSLA algorithm, the sample sampled by the SDDS algorithm has higher evaluation accuracy, and the probability distribution of the sample is closer to the original streaming data, with the AOCV indicator being nearly 10% higher. In addition, the SDDS algorithm can achieve over 90% accuracy, recall, and F1 score for training and testing neural networks with small sampling rates, all of which are higher than the SDSLA algorithm. In summary, the SDDS algorithm not only accurately evaluates the value characteristics of streaming data but also facilitates the training of neural network models, which has important research significance in big data estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王策发布了新的文献求助10
1秒前
2秒前
2秒前
111发布了新的文献求助30
3秒前
HuiJN发布了新的文献求助10
5秒前
顺利的历发布了新的文献求助10
6秒前
纯真皮卡丘完成签到 ,获得积分10
7秒前
薛枏完成签到,获得积分10
8秒前
9秒前
bensonyang1013完成签到 ,获得积分10
10秒前
11秒前
11秒前
13秒前
问问发布了新的文献求助10
14秒前
儒雅南风完成签到 ,获得积分10
14秒前
liuxinxin发布了新的文献求助10
15秒前
Erin完成签到,获得积分10
15秒前
moral发布了新的文献求助10
18秒前
18秒前
123456完成签到 ,获得积分20
19秒前
科研通AI5应助笨笨松采纳,获得10
20秒前
kajikaji完成签到,获得积分10
21秒前
干饭大王应助顺利的历采纳,获得10
22秒前
bravo完成签到,获得积分20
23秒前
25秒前
25秒前
千暮完成签到,获得积分10
27秒前
学术噗噗完成签到,获得积分10
28秒前
付绒发布了新的文献求助10
29秒前
30秒前
30秒前
zha发布了新的文献求助10
31秒前
31秒前
所所应助shinn采纳,获得10
32秒前
ZJP421完成签到,获得积分20
32秒前
Qiao应助zhengqisong采纳,获得20
33秒前
34秒前
Felix发布了新的文献求助10
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494