A novel thermosyphon cooling applied to concentrated photovoltaic-thermoelectric system for passive and efficient heat dissipation

热虹吸 光伏系统 热电冷却 热电效应 水冷 热电发电机 散热片 材料科学 核工程 主动冷却 被动冷却 机械工程 环境科学 电气工程 汽车工程 工程物理 工程类 传热 热力学 物理 热交换器
作者
Haichen Yao,Wenhao Pu,Jiabin Wang,Yubin Qin,Long Qiao,N.H. Song
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:236: 121460-121460 被引量:3
标识
DOI:10.1016/j.applthermaleng.2023.121460
摘要

Concentrated photovoltaic-thermoelectric systems have received extensive research attention as a means of enhancing the utilization rate of solar energy. However, the expedited progress of these systems has been hindered by a myriad of challenges, such as the additional power consumption required for active cooling and the inadequate cooling rates of conventional passive cooling techniques. To overcome these limitations, a novel concentrated photovoltaic-thermoelectric system integrating thermosyphon cooling has been developed and subjected to a comprehensive analysis, encompassing its start-up performance, pipe resistance characteristics, and power generation performance have been analyzed. The results reveal that the buoyancy generated by the thermosyphon is 8.22 N, which effectively drives the speed of cooling water circulation to 0.011 m/s. The start-up time of the thermosyphon effect lengthens gradually with a decrease in inclination angle of heat sink, while the cooling temperature at the final stable state remains relatively consistent. Remarkably, at 240 kW/m2, the concentrated photovoltaic cell exhibits a remarkable heat dissipation power density of 15.26 W/cm2. Meanwhile, the optimal output voltage of concentrated photovoltaic is 1.907 V, at which the concentrated photovoltaic output power is 1.774 W. The optimal output voltage of thermoelectric is 0.528 V, at which the thermoelectric output power is 0.054 W. The results provide guidance for designing high-performance cooling systems for concentrated photovoltaic-thermoelectric systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
至浩完成签到,获得积分20
刚刚
刚刚
可乐发布了新的文献求助10
1秒前
1秒前
爱科研的小松完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助震动的乐天采纳,获得10
2秒前
科研通AI6应助jaum采纳,获得10
3秒前
3秒前
沐潼DTX发布了新的文献求助10
3秒前
SciGPT应助kai采纳,获得10
4秒前
4秒前
打打应助寻光人采纳,获得10
5秒前
5秒前
5秒前
5秒前
娃哈哈哈完成签到 ,获得积分10
6秒前
原始人发布了新的文献求助10
6秒前
无人完成签到,获得积分10
6秒前
柯幼萱完成签到,获得积分10
6秒前
英俊的铭应助健壮冰淇淋采纳,获得10
7秒前
夜晚有星完成签到,获得积分20
7秒前
8秒前
zdq10068发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
嘉深完成签到,获得积分10
9秒前
科目三应助小汤圆采纳,获得10
9秒前
9秒前
坚强香旋完成签到,获得积分10
9秒前
魁梧的马里奥完成签到,获得积分10
11秒前
11秒前
隐形小湫发布了新的文献求助10
11秒前
星辰大海应助周周不喝粥采纳,获得10
11秒前
科目三应助李奚采纳,获得20
11秒前
12秒前
乐观的傲云完成签到,获得积分10
12秒前
12秒前
12秒前
无语发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481218
求助须知:如何正确求助?哪些是违规求助? 4582199
关于积分的说明 14384156
捐赠科研通 4510881
什么是DOI,文献DOI怎么找? 2472055
邀请新用户注册赠送积分活动 1458443
关于科研通互助平台的介绍 1432034