Optimized TSA ResNet Architecture with TSH—Discriminatory Features for Kidney Stone Classification from QUS Images

判别式 卷积神经网络 计算机科学 超参数 人工智能 模式识别(心理学) 肾脏疾病 剪切波 机器学习 数据挖掘 图像(数学) 医学 内科学
作者
P. Nagaraj,V. Muneeswaran,Josephine Selle Jeyanathan,Baidyanath Panda,Akash Kumar Bhoi
出处
期刊:Studies in computational intelligence 卷期号:: 227-245
标识
DOI:10.1007/978-3-031-38281-9_10
摘要

Kidney diseases are the major reason for renal failure. Ranging from calcium deposits, stones, and to the maximum extent of chronic kidney disease, there are multiple classifications of that which may cause renal failure and lead to a large proportion of mortality. Qualitative Ultrasound images are usually preferred as the ground for examining the kidney in medical contexts. In recent times Computer-Aided Diagnosis of kidney health analysis has paved the way for the effective detection of diseases at early stages by employing convolutional Neural Networks and their allied versions of deep learning technologies. The availability of these algorithms in a simulated environment yields better results when compared to images taken in real-time cases. The performance of these algorithms is confined within a limited level of performance metrics such as accuracy and sensitivity. To address these issues, we have focussed on building an automated diagnosis of kidney diseases and classifying it according to their features illustrated in the QUS images. The anticipated methodology in this work merges the texture, statistical and histogram-based features (TSH) which are discriminative when compared with other features exhibited by the QUS, then these TSH features are employed in ResNet architecture for successful recognition of kidney diseases. The observance in the reduction of accuracy due to the improper training of the hyperparameters such as momentum and learning rate of CNN is obliterated with the usage of the position-based optimization algorithm, namely the Tree Seed Algorithm. The output of the classification was analysed through the performance analysis for the optimization-tuned kidney image standard dataset. The results from the ResNet model with TSA optimization show quite good efficiency of using an algorithmic approach in tuning deep learning architectures. Further exploration of the momentum and learning rate of the Resnet architecture makes the proposed TSH-TSA-Resnet architecture outperform the existing method and provide a classification accuracy of 98.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KONG完成签到,获得积分10
1秒前
萝卜猪完成签到,获得积分10
1秒前
小何完成签到,获得积分10
2秒前
宁幼萱完成签到,获得积分10
2秒前
11完成签到 ,获得积分10
3秒前
上官若男应助lym采纳,获得10
3秒前
科研的师弟完成签到,获得积分10
3秒前
烟花应助青尘枫叶采纳,获得10
3秒前
光亮白山完成签到 ,获得积分10
3秒前
brianzk1989完成签到,获得积分10
3秒前
NexusExplorer应助wanna采纳,获得10
4秒前
阳仔完成签到,获得积分10
6秒前
7秒前
7秒前
Conner完成签到 ,获得积分10
7秒前
美满朝雪完成签到,获得积分10
7秒前
8秒前
Lwxbb发布了新的文献求助10
8秒前
共享精神应助Amoxi采纳,获得30
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
zwj应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
10秒前
可期完成签到,获得积分10
10秒前
wanna完成签到,获得积分10
11秒前
浅笑发布了新的文献求助10
11秒前
ddddd完成签到 ,获得积分10
11秒前
海风发布了新的文献求助10
12秒前
12秒前
12秒前
名金学南完成签到,获得积分10
12秒前
田様应助www采纳,获得10
12秒前
莫羽倾尘完成签到,获得积分10
13秒前
13秒前
13秒前
chase发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835