Optimized TSA ResNet Architecture with TSH—Discriminatory Features for Kidney Stone Classification from QUS Images

判别式 卷积神经网络 计算机科学 超参数 人工智能 模式识别(心理学) 肾脏疾病 剪切波 机器学习 数据挖掘 图像(数学) 医学 内科学
作者
P. Nagaraj,V. Muneeswaran,Josephine Selle Jeyanathan,Baidyanath Panda,Akash Kumar Bhoi
出处
期刊:Studies in computational intelligence 卷期号:: 227-245
标识
DOI:10.1007/978-3-031-38281-9_10
摘要

Kidney diseases are the major reason for renal failure. Ranging from calcium deposits, stones, and to the maximum extent of chronic kidney disease, there are multiple classifications of that which may cause renal failure and lead to a large proportion of mortality. Qualitative Ultrasound images are usually preferred as the ground for examining the kidney in medical contexts. In recent times Computer-Aided Diagnosis of kidney health analysis has paved the way for the effective detection of diseases at early stages by employing convolutional Neural Networks and their allied versions of deep learning technologies. The availability of these algorithms in a simulated environment yields better results when compared to images taken in real-time cases. The performance of these algorithms is confined within a limited level of performance metrics such as accuracy and sensitivity. To address these issues, we have focussed on building an automated diagnosis of kidney diseases and classifying it according to their features illustrated in the QUS images. The anticipated methodology in this work merges the texture, statistical and histogram-based features (TSH) which are discriminative when compared with other features exhibited by the QUS, then these TSH features are employed in ResNet architecture for successful recognition of kidney diseases. The observance in the reduction of accuracy due to the improper training of the hyperparameters such as momentum and learning rate of CNN is obliterated with the usage of the position-based optimization algorithm, namely the Tree Seed Algorithm. The output of the classification was analysed through the performance analysis for the optimization-tuned kidney image standard dataset. The results from the ResNet model with TSA optimization show quite good efficiency of using an algorithmic approach in tuning deep learning architectures. Further exploration of the momentum and learning rate of the Resnet architecture makes the proposed TSH-TSA-Resnet architecture outperform the existing method and provide a classification accuracy of 98.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助浪迹天涯采纳,获得10
刚刚
1秒前
安南发布了新的文献求助10
1秒前
2秒前
healthy完成签到 ,获得积分10
2秒前
3秒前
刘大可完成签到,获得积分10
3秒前
6秒前
su发布了新的文献求助10
6秒前
rookie发布了新的文献求助10
7秒前
方勇飞发布了新的文献求助10
8秒前
郭菱香完成签到 ,获得积分20
8秒前
皮念寒完成签到,获得积分10
8秒前
顺其自然_666888完成签到,获得积分10
8秒前
9秒前
向上的小v完成签到 ,获得积分10
10秒前
10秒前
12秒前
酷酷紫蓝完成签到 ,获得积分10
12秒前
12秒前
方勇飞完成签到,获得积分10
12秒前
LYZ完成签到,获得积分10
12秒前
黄景滨完成签到 ,获得积分20
13秒前
13秒前
123456完成签到,获得积分20
13秒前
hkl1542完成签到,获得积分10
14秒前
14秒前
caohuijun发布了新的文献求助10
15秒前
杳鸢应助韦颖采纳,获得20
16秒前
16秒前
wshwx完成签到 ,获得积分10
16秒前
16秒前
魏伯安发布了新的文献求助10
17秒前
17秒前
传奇3应助daniel采纳,获得10
17秒前
ding应助帅气的听莲采纳,获得10
17秒前
sunshine完成签到,获得积分10
18秒前
大方嵩发布了新的文献求助10
18秒前
SciGPT应助tianny采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824