Optimized TSA ResNet Architecture with TSH—Discriminatory Features for Kidney Stone Classification from QUS Images

判别式 卷积神经网络 计算机科学 超参数 人工智能 模式识别(心理学) 肾脏疾病 剪切波 机器学习 数据挖掘 图像(数学) 医学 内科学
作者
P. Nagaraj,V. Muneeswaran,Josephine Selle Jeyanathan,Baidyanath Panda,Akash Kumar Bhoi
出处
期刊:Studies in computational intelligence 卷期号:: 227-245
标识
DOI:10.1007/978-3-031-38281-9_10
摘要

Kidney diseases are the major reason for renal failure. Ranging from calcium deposits, stones, and to the maximum extent of chronic kidney disease, there are multiple classifications of that which may cause renal failure and lead to a large proportion of mortality. Qualitative Ultrasound images are usually preferred as the ground for examining the kidney in medical contexts. In recent times Computer-Aided Diagnosis of kidney health analysis has paved the way for the effective detection of diseases at early stages by employing convolutional Neural Networks and their allied versions of deep learning technologies. The availability of these algorithms in a simulated environment yields better results when compared to images taken in real-time cases. The performance of these algorithms is confined within a limited level of performance metrics such as accuracy and sensitivity. To address these issues, we have focussed on building an automated diagnosis of kidney diseases and classifying it according to their features illustrated in the QUS images. The anticipated methodology in this work merges the texture, statistical and histogram-based features (TSH) which are discriminative when compared with other features exhibited by the QUS, then these TSH features are employed in ResNet architecture for successful recognition of kidney diseases. The observance in the reduction of accuracy due to the improper training of the hyperparameters such as momentum and learning rate of CNN is obliterated with the usage of the position-based optimization algorithm, namely the Tree Seed Algorithm. The output of the classification was analysed through the performance analysis for the optimization-tuned kidney image standard dataset. The results from the ResNet model with TSA optimization show quite good efficiency of using an algorithmic approach in tuning deep learning architectures. Further exploration of the momentum and learning rate of the Resnet architecture makes the proposed TSH-TSA-Resnet architecture outperform the existing method and provide a classification accuracy of 98.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freesia发布了新的文献求助10
刚刚
1秒前
姚哈哈发布了新的文献求助10
1秒前
lunhui6453完成签到,获得积分10
2秒前
2秒前
姜宇航发布了新的文献求助10
2秒前
温暖的秋荷完成签到,获得积分10
2秒前
bkagyin应助lst采纳,获得10
3秒前
万能图书馆应助翟淑雨采纳,获得10
3秒前
科研通AI6应助猫猫无敌采纳,获得10
3秒前
4秒前
今后应助nenoaowu采纳,获得10
6秒前
安宁发布了新的文献求助10
6秒前
7秒前
啦啦啦l发布了新的文献求助10
7秒前
杨艺完成签到 ,获得积分10
8秒前
wjxcl发布了新的文献求助10
8秒前
自觉飞风发布了新的文献求助10
10秒前
搜集达人应助姚哈哈采纳,获得10
10秒前
yhtu发布了新的文献求助30
11秒前
shengsheng旭完成签到,获得积分10
11秒前
liu45kf发布了新的文献求助10
12秒前
万能图书馆应助阿郑采纳,获得10
12秒前
脑洞疼应助早早采纳,获得10
13秒前
传奇3应助RUI采纳,获得10
14秒前
英俊的铭应助曾馨慧采纳,获得10
14秒前
14秒前
15秒前
夜雪应助予秋采纳,获得10
15秒前
称心芷巧应助予秋采纳,获得10
16秒前
研友_yLpYkn完成签到,获得积分10
18秒前
情怀应助kei采纳,获得10
18秒前
烟花应助kuangsan采纳,获得10
18秒前
Triumph完成签到,获得积分10
19秒前
努力的宁发布了新的文献求助10
19秒前
19秒前
科研通AI6应助芋圆采纳,获得10
19秒前
19秒前
19秒前
乐乐应助戴帽子采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500