Optimized TSA ResNet Architecture with TSH—Discriminatory Features for Kidney Stone Classification from QUS Images

判别式 卷积神经网络 计算机科学 超参数 人工智能 模式识别(心理学) 肾脏疾病 剪切波 机器学习 数据挖掘 图像(数学) 医学 内科学
作者
P. Nagaraj,V. Muneeswaran,Josephine Selle Jeyanathan,Baidyanath Panda,Akash Kumar Bhoi
出处
期刊:Studies in computational intelligence 卷期号:: 227-245
标识
DOI:10.1007/978-3-031-38281-9_10
摘要

Kidney diseases are the major reason for renal failure. Ranging from calcium deposits, stones, and to the maximum extent of chronic kidney disease, there are multiple classifications of that which may cause renal failure and lead to a large proportion of mortality. Qualitative Ultrasound images are usually preferred as the ground for examining the kidney in medical contexts. In recent times Computer-Aided Diagnosis of kidney health analysis has paved the way for the effective detection of diseases at early stages by employing convolutional Neural Networks and their allied versions of deep learning technologies. The availability of these algorithms in a simulated environment yields better results when compared to images taken in real-time cases. The performance of these algorithms is confined within a limited level of performance metrics such as accuracy and sensitivity. To address these issues, we have focussed on building an automated diagnosis of kidney diseases and classifying it according to their features illustrated in the QUS images. The anticipated methodology in this work merges the texture, statistical and histogram-based features (TSH) which are discriminative when compared with other features exhibited by the QUS, then these TSH features are employed in ResNet architecture for successful recognition of kidney diseases. The observance in the reduction of accuracy due to the improper training of the hyperparameters such as momentum and learning rate of CNN is obliterated with the usage of the position-based optimization algorithm, namely the Tree Seed Algorithm. The output of the classification was analysed through the performance analysis for the optimization-tuned kidney image standard dataset. The results from the ResNet model with TSA optimization show quite good efficiency of using an algorithmic approach in tuning deep learning architectures. Further exploration of the momentum and learning rate of the Resnet architecture makes the proposed TSH-TSA-Resnet architecture outperform the existing method and provide a classification accuracy of 98.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助淘淘采纳,获得10
刚刚
冰火油条虾完成签到,获得积分10
刚刚
陈逸恒发布了新的文献求助10
刚刚
大红完成签到,获得积分10
刚刚
爆米花应助应天亦采纳,获得10
1秒前
善学以致用应助echooooo采纳,获得10
1秒前
墨卿完成签到,获得积分10
1秒前
uraylong发布了新的文献求助10
2秒前
3秒前
达达利亚完成签到,获得积分10
3秒前
111发布了新的文献求助30
3秒前
ponytail完成签到,获得积分10
4秒前
榕小蜂完成签到 ,获得积分10
4秒前
4秒前
5秒前
wdy111应助Mila采纳,获得20
5秒前
hahhh7发布了新的文献求助10
5秒前
5秒前
科研通AI5应助huyuan采纳,获得10
6秒前
冰西瓜完成签到 ,获得积分0
6秒前
酱啊油完成签到,获得积分10
6秒前
charles发布了新的文献求助10
8秒前
LYL2003完成签到,获得积分10
8秒前
1231完成签到,获得积分10
8秒前
9秒前
大气的天蓝完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
白鸢发布了新的文献求助10
10秒前
有趣的灵魂完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
陈先生发布了新的文献求助10
11秒前
香蕉觅云应助糟糕的德地采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653