A time variant uncertainty propagation method for high-dimensional dynamic structural system via K–L expansion and Bayesian deep neural network

人工神经网络 贝叶斯网络 动态贝叶斯网络 贝叶斯概率 计算机科学 深层神经网络 人工智能 算法
作者
Jingfei Liu,Chao Jiang,Haibo Liu,Guijie Li
出处
期刊:Philosophical Transactions of the Royal Society A [The Royal Society]
卷期号:381 (2260) 被引量:2
标识
DOI:10.1098/rsta.2022.0388
摘要

In this paper, a time variant uncertainty propagation (TUP) method for dynamic structural system with high-dimensional input variables is proposed. Firstly, an arbitrary stochastic process simulation (ASPS) method based on Karhunen-Loève (K-L) expansion and numerical integration is developed, expressing the stochastic process as the combination of its marginal distributions and eigen functions at several discrete time points. Secondly, the iterative sorting method is implemented to the statistic samples of marginal distributions for matching the constraints of covariance function. Since marginal distributions are directly used to express the stochastic process, the proposed ASPS is suitable for stationary or non-stationary stochastic processes with arbitrary marginal distributions. Thirdly, the high-dimensional TUP problem is converted into several high-dimensional static uncertainty propagation (UP) problems after implementing ASPS. Then, the Bayesian deep neural network based UP method is used to compute the marginal distributions as well as the eigen functions of dynamic system response, the high-dimensional TUP problem can thus be solved. Finally, several numerical examples are used to validate the effectiveness of the proposed method. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人民群众完成签到,获得积分10
刚刚
眨眼发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
3秒前
赘婿应助gl198941采纳,获得10
3秒前
4秒前
6秒前
渊崖曙春完成签到,获得积分0
7秒前
8秒前
阿邱发布了新的文献求助10
8秒前
9秒前
噗哧噗哧发布了新的文献求助10
9秒前
Invna发布了新的文献求助10
9秒前
田様应助宇智波开心采纳,获得10
11秒前
12秒前
13秒前
科研通AI5应助梦芝采纳,获得10
14秒前
科研通AI5应助个性的忆梅采纳,获得10
16秒前
所所应助sensensmart采纳,获得10
16秒前
jwq发布了新的文献求助10
16秒前
18秒前
独孤阳光完成签到,获得积分10
19秒前
19秒前
20秒前
热情蜗牛完成签到 ,获得积分20
21秒前
yuebao关注了科研通微信公众号
22秒前
Akim应助踏实口红采纳,获得10
22秒前
美好远望发布了新的文献求助10
23秒前
LIDOC发布了新的文献求助30
25秒前
安详的囧完成签到,获得积分10
25秒前
hy发布了新的文献求助10
25秒前
霸气的青柏完成签到,获得积分10
25秒前
26秒前
fpsfuxi发布了新的文献求助10
26秒前
科研通AI5应助Moonber采纳,获得10
27秒前
plain完成签到,获得积分10
27秒前
孙军涛完成签到,获得积分10
28秒前
赘婿应助加减乘除采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589309
求助须知:如何正确求助?哪些是违规求助? 3157588
关于积分的说明 9516135
捐赠科研通 2860478
什么是DOI,文献DOI怎么找? 1571847
邀请新用户注册赠送积分活动 737517
科研通“疑难数据库(出版商)”最低求助积分说明 722342