Self-Adversarial Generative Adversarial Network for Underwater Image Enhancement

水下 人工智能 计算机科学 图像质量 计算机视觉 图像(数学) 对抗制 编码(内存) 模式识别(心理学) 地理 考古
作者
Haiwen Wang,Miao Yang,Ge Yin,Jinnai Dong
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (1): 237-248 被引量:5
标识
DOI:10.1109/joe.2023.3297731
摘要

Generative adversarial network (GAN)-based underwater image enhancement methods improve image quality by encoding a raw image and an adversarial image with the corresponding high-quality version. Although these methods have recently attracted significant attention, the lack of referred clear underwater imagery forces GAN-based underwater image enhancement models to be trained with synthetic or enhanced underwater images, limiting their applicability and performance. This article proposes a novel self-adversarial GAN (SA-GAN) to enhance underwater images by referring to paired raw and high-quality natural images. Specifically, a self-adversarial mode is designed that attaches a further constraint to the generation procedure. By applying two pairwise image quality discriminators, the generators are supervised with a stronger decision boundary to generate better quality than the high-quality natural image and the last-generated image. This is a novel settlement of the limitation caused by the adversary system with the synthetic or enhanced underwater images, realizing the quality transfer from natural images to distorted underwater images. Several experiments on real underwater images and two commonly used underwater image data sets demonstrate that the proposed method subjectively and objectively performs better than current methods in restoring the coloration of underwater images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bruna完成签到,获得积分10
1秒前
一直在笑完成签到,获得积分10
3秒前
3秒前
overlood完成签到,获得积分10
3秒前
请叫我风吹麦浪应助jiayou采纳,获得10
4秒前
李学文啊完成签到,获得积分10
5秒前
饱满若灵完成签到,获得积分10
6秒前
蔺不平完成签到,获得积分10
7秒前
xiao晓完成签到,获得积分10
7秒前
阳炎完成签到,获得积分10
10秒前
ymmmaomao23完成签到,获得积分10
12秒前
直率翠绿完成签到,获得积分10
12秒前
X先生完成签到 ,获得积分10
13秒前
CodeCraft应助honphyjiang采纳,获得10
13秒前
繁荣的映雁完成签到,获得积分10
13秒前
懵懂的梦秋完成签到,获得积分10
14秒前
15秒前
木宏完成签到,获得积分10
15秒前
tuzi完成签到,获得积分10
15秒前
针尖上的王子完成签到,获得积分10
16秒前
ZengJuan完成签到 ,获得积分10
17秒前
斯文的芹菜完成签到 ,获得积分10
18秒前
柳博超完成签到,获得积分10
20秒前
周周发布了新的文献求助10
20秒前
慕倾完成签到,获得积分10
21秒前
FBQZDJG2122完成签到,获得积分10
21秒前
zpj完成签到 ,获得积分10
21秒前
hyjcnhyj完成签到,获得积分10
22秒前
科研通AI2S应助Jenny采纳,获得10
22秒前
23秒前
加油少年完成签到,获得积分10
23秒前
24秒前
倪小呆完成签到 ,获得积分10
24秒前
26秒前
ghost202发布了新的文献求助10
26秒前
欣慰的舞仙完成签到,获得积分10
26秒前
顺利的绿柏完成签到,获得积分10
29秒前
NexusExplorer应助泥巴采纳,获得10
30秒前
31秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477528
求助须知:如何正确求助?哪些是违规求助? 3068967
关于积分的说明 9110472
捐赠科研通 2760481
什么是DOI,文献DOI怎么找? 1514959
邀请新用户注册赠送积分活动 700503
科研通“疑难数据库(出版商)”最低求助积分说明 699631