已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Load Forecasting of Electric Vehicle Charging Stations: Attention Based Spatiotemporal Multi-Graph Convolutional Networks

计算机科学 图形 实时计算 理论计算机科学
作者
Jinkai Shi,Weige Zhang,Yan Bao,Wenzhong Gao,Zhihao Wang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tsg.2023.3321116
摘要

The charging load forecasting is of significant importance to the economic operation of charging stations and the stable operation of power systems. The charging stations couple power systems with transportation systems. Their charging loads are not only affected by the driver’s driving and charging behavior simultaneously, but also by the above two networks. There is much literature reporting load forecasting combined with historical charging loads in temporal dimension. However, the spatial data of charging stations in the neighboring areas is helpful for load forecasting, as they share common conditions, including traffic and weather factors. This paper proposes load forecasting of electric vehicle charging stations based on the spatiotemporal multi-graph convolutional networks (STMGCN). STMGCN contains three components: gated dilated causal convolution, spatiotemporal attention mechanism, and multi-graph convolutional layer. Firstly, the load model based on graph structure is established according to the historical load and geographical information of charging stations. Then, a load forecasting method of multiple charging stations is proposed, which can effectively share spatiotemporal relationships among stations. Finally, experiments on real-world dataset illustrate that STMGCN is capable of improving the accuracy of charging stations load forecasting compared with the baselines, which shows the effectiveness of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Alphahang采纳,获得30
1秒前
小小完成签到,获得积分10
2秒前
7秒前
lulu完成签到 ,获得积分10
8秒前
赘婿应助炸了的采纳,获得10
8秒前
9秒前
June-ho发布了新的文献求助30
10秒前
wlp鹏完成签到,获得积分10
14秒前
Lucas应助彪壮的一曲采纳,获得10
17秒前
梦游游游完成签到,获得积分10
17秒前
17秒前
Syyyy完成签到,获得积分10
19秒前
cjx完成签到,获得积分10
19秒前
liberty发布了新的文献求助30
20秒前
21秒前
谦让小玉完成签到 ,获得积分10
22秒前
Zyl发布了新的文献求助10
23秒前
June-ho完成签到,获得积分10
25秒前
25秒前
李沐籽发布了新的文献求助10
25秒前
Akim应助沈佳琪采纳,获得10
26秒前
田様应助冷静初蓝采纳,获得10
26秒前
是然宝啊完成签到,获得积分10
26秒前
ABC发布了新的文献求助10
27秒前
29秒前
liberty完成签到,获得积分10
29秒前
汉堡包应助学术智子采纳,获得10
30秒前
33秒前
Singularity应助今昭采纳,获得10
35秒前
wanci应助Z1070741749采纳,获得10
35秒前
36秒前
37秒前
38秒前
38秒前
38秒前
淡然老头完成签到,获得积分10
38秒前
41秒前
细心怜寒发布了新的文献求助10
42秒前
winterm发布了新的文献求助10
43秒前
zzszy发布了新的文献求助10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133654
求助须知:如何正确求助?哪些是违规求助? 2784660
关于积分的说明 7768042
捐赠科研通 2439912
什么是DOI,文献DOI怎么找? 1297086
科研通“疑难数据库(出版商)”最低求助积分说明 624856
版权声明 600791