Edge-Guided Remote-Sensing Image Compression

计算机科学 有损压缩 GSM演进的增强数据速率 平滑的 计算机视觉 公制(单位) 图像压缩 图像质量 人工智能 忠诚 遥感 图像(数学) 图像处理 地理 电信 工程类 运营管理
作者
Pengfei Han,Bin Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:9
标识
DOI:10.1109/tgrs.2023.3314012
摘要

Using high-fidelity image compression makes it possible to transmit remote-sensing images in real-time. Nevertheless, existing lossy remote-sensing image compression (RSIC) methods have some inherent potential issues, including blocking and blurring effects, which are particularly problematic in low-compression-ratio (CR) settings. Although numerous methods have been studied to address the aforementioned issue, the majority of them exploit the prior of local smoothness in images, which usually induces the over-smoothing of regions with noticeable structure (i.e., edges and textures). During this task, we developed an innovative end-to-end framework that enables high-fidelity RSIC while retaining sharp edge and texture information. Initially, we put forth an edge-guided adversarial network (EGA-Net) for simultaneously restoring edge structures and generating texture details. Second, we impose an edge fidelity constraint to direct our network to optimize image content and structural information jointly. In addition, to facilitate this task, we have constructed a large-scale RSIC dataset named NWPU-RS-Compression (NWPU-RSC). This dataset contains over 300000 images of 30 categories, all with a fixed resolution of 600 × 600. Finally, a new quantitative metric for full reference image quality that takes into account signal statistics and the characteristics of the human visual system (HVS) has been developed, which helps evaluate reconstructed remote-sensing images more objectively and accurately. Experimental evidence has demonstrated that the EGA-Net surpasses several representative compression approaches regarding quality metrics on the NWPU-RSC, AID, and ISPR Vaihingen datasets. Code, dataset, and more experimental results can be accessed at https: //github.com/Chenxi1510/Remote-sensing-Image-Compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大创关注了科研通微信公众号
1秒前
谦让友绿完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
葡萄炖雪梨完成签到 ,获得积分10
4秒前
5秒前
zhouyunan完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
fer发布了新的文献求助10
6秒前
CipherSage应助孤独混子采纳,获得10
6秒前
freedommm发布了新的文献求助100
7秒前
正义狗狗侠完成签到,获得积分10
7秒前
listener应助科研通管家采纳,获得10
7秒前
邱志鸿发布了新的文献求助10
7秒前
xiaotudou95应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得30
7秒前
大个应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得30
7秒前
小板凳完成签到,获得积分10
7秒前
mhl11应助科研通管家采纳,获得10
7秒前
Chem应助科研通管家采纳,获得10
7秒前
sissi225应助科研通管家采纳,获得10
7秒前
精明手套发布了新的文献求助30
8秒前
mhl11应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
mhl11应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
哒哒完成签到,获得积分10
8秒前
smile完成签到,获得积分10
9秒前
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308114
求助须知:如何正确求助?哪些是违规求助? 2941617
关于积分的说明 8504720
捐赠科研通 2616297
什么是DOI,文献DOI怎么找? 1429556
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648748