Edge-Guided Remote-Sensing Image Compression

计算机科学 有损压缩 GSM演进的增强数据速率 平滑的 计算机视觉 公制(单位) 图像压缩 图像质量 人工智能 忠诚 遥感 图像(数学) 图像处理 地理 电信 工程类 运营管理
作者
Pengfei Han,Bin Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:9
标识
DOI:10.1109/tgrs.2023.3314012
摘要

Using high-fidelity image compression makes it possible to transmit remote-sensing images in real-time. Nevertheless, existing lossy remote-sensing image compression (RSIC) methods have some inherent potential issues, including blocking and blurring effects, which are particularly problematic in low-compression-ratio (CR) settings. Although numerous methods have been studied to address the aforementioned issue, the majority of them exploit the prior of local smoothness in images, which usually induces the over-smoothing of regions with noticeable structure (i.e., edges and textures). During this task, we developed an innovative end-to-end framework that enables high-fidelity RSIC while retaining sharp edge and texture information. Initially, we put forth an edge-guided adversarial network (EGA-Net) for simultaneously restoring edge structures and generating texture details. Second, we impose an edge fidelity constraint to direct our network to optimize image content and structural information jointly. In addition, to facilitate this task, we have constructed a large-scale RSIC dataset named NWPU-RS-Compression (NWPU-RSC). This dataset contains over 300000 images of 30 categories, all with a fixed resolution of 600 × 600. Finally, a new quantitative metric for full reference image quality that takes into account signal statistics and the characteristics of the human visual system (HVS) has been developed, which helps evaluate reconstructed remote-sensing images more objectively and accurately. Experimental evidence has demonstrated that the EGA-Net surpasses several representative compression approaches regarding quality metrics on the NWPU-RSC, AID, and ISPR Vaihingen datasets. Code, dataset, and more experimental results can be accessed at https: //github.com/Chenxi1510/Remote-sensing-Image-Compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gougou完成签到,获得积分10
刚刚
羊二呆完成签到,获得积分10
3秒前
球球发布了新的文献求助10
4秒前
椿人完成签到 ,获得积分10
5秒前
Cry_Man完成签到 ,获得积分10
7秒前
路明非完成签到,获得积分10
9秒前
9秒前
wddx完成签到,获得积分10
10秒前
LFY完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助以筱采纳,获得10
10秒前
jwx完成签到,获得积分0
11秒前
小亮哈哈完成签到,获得积分0
13秒前
529完成签到 ,获得积分10
13秒前
13秒前
罗实完成签到 ,获得积分10
16秒前
17秒前
舟遥遥完成签到,获得积分10
21秒前
ahui完成签到 ,获得积分10
22秒前
Present完成签到,获得积分10
22秒前
chuzihang完成签到 ,获得积分10
23秒前
23秒前
夜雨诗意完成签到,获得积分10
25秒前
往返完成签到,获得积分10
26秒前
小唐完成签到,获得积分10
27秒前
章鱼完成签到,获得积分10
30秒前
松松包完成签到,获得积分10
30秒前
32秒前
星辰大海应助王珺采纳,获得10
32秒前
marc107完成签到,获得积分10
32秒前
阜睿完成签到 ,获得积分10
33秒前
乐乐乐乐乐乐完成签到,获得积分10
36秒前
37秒前
37秒前
欧欧欧导完成签到,获得积分10
39秒前
烟花应助wang采纳,获得10
40秒前
41秒前
潇洒的天与完成签到,获得积分10
42秒前
hannah完成签到,获得积分10
43秒前
ajing完成签到,获得积分10
44秒前
丫丫完成签到,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664