Edge-Guided Remote-Sensing Image Compression

计算机科学 有损压缩 GSM演进的增强数据速率 平滑的 计算机视觉 公制(单位) 图像压缩 图像质量 人工智能 忠诚 遥感 图像(数学) 图像处理 地理 电信 工程类 运营管理
作者
Pengfei Han,Bin Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:9
标识
DOI:10.1109/tgrs.2023.3314012
摘要

Using high-fidelity image compression makes it possible to transmit remote-sensing images in real-time. Nevertheless, existing lossy remote-sensing image compression (RSIC) methods have some inherent potential issues, including blocking and blurring effects, which are particularly problematic in low-compression-ratio (CR) settings. Although numerous methods have been studied to address the aforementioned issue, the majority of them exploit the prior of local smoothness in images, which usually induces the over-smoothing of regions with noticeable structure (i.e., edges and textures). During this task, we developed an innovative end-to-end framework that enables high-fidelity RSIC while retaining sharp edge and texture information. Initially, we put forth an edge-guided adversarial network (EGA-Net) for simultaneously restoring edge structures and generating texture details. Second, we impose an edge fidelity constraint to direct our network to optimize image content and structural information jointly. In addition, to facilitate this task, we have constructed a large-scale RSIC dataset named NWPU-RS-Compression (NWPU-RSC). This dataset contains over 300000 images of 30 categories, all with a fixed resolution of 600 × 600. Finally, a new quantitative metric for full reference image quality that takes into account signal statistics and the characteristics of the human visual system (HVS) has been developed, which helps evaluate reconstructed remote-sensing images more objectively and accurately. Experimental evidence has demonstrated that the EGA-Net surpasses several representative compression approaches regarding quality metrics on the NWPU-RSC, AID, and ISPR Vaihingen datasets. Code, dataset, and more experimental results can be accessed at https: //github.com/Chenxi1510/Remote-sensing-Image-Compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱壹帆发布了新的文献求助10
刚刚
文艺映阳完成签到,获得积分10
刚刚
亮山火马完成签到,获得积分10
刚刚
Lollipopzz发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
zhw297发布了新的文献求助10
2秒前
2秒前
慕青应助李忠明采纳,获得10
2秒前
2秒前
背后思萱完成签到,获得积分10
3秒前
李健的小迷弟应助小枣采纳,获得10
3秒前
汪金完成签到,获得积分10
3秒前
3秒前
刘mou完成签到,获得积分10
4秒前
wen发布了新的文献求助10
4秒前
smallfatQQ完成签到,获得积分10
5秒前
5秒前
F_echo发布了新的文献求助10
5秒前
5秒前
酷酷的盼海完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
BBrian发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
可爱的函函应助liguanyu1078采纳,获得10
10秒前
10秒前
hqz完成签到,获得积分10
11秒前
赘婿应助壮壮不爱吃肉采纳,获得10
11秒前
11秒前
思源应助黄海娜采纳,获得30
12秒前
12秒前
smallfatQQ发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416040
求助须知:如何正确求助?哪些是违规求助? 4532443
关于积分的说明 14134586
捐赠科研通 4448188
什么是DOI,文献DOI怎么找? 2440180
邀请新用户注册赠送积分活动 1432075
关于科研通互助平台的介绍 1409601