已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Edge-Guided Remote-Sensing Image Compression

计算机科学 有损压缩 GSM演进的增强数据速率 平滑的 计算机视觉 公制(单位) 图像压缩 图像质量 人工智能 忠诚 遥感 图像(数学) 图像处理 地理 电信 工程类 运营管理
作者
Pengfei Han,Bin Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:9
标识
DOI:10.1109/tgrs.2023.3314012
摘要

Using high-fidelity image compression makes it possible to transmit remote-sensing images in real-time. Nevertheless, existing lossy remote-sensing image compression (RSIC) methods have some inherent potential issues, including blocking and blurring effects, which are particularly problematic in low-compression-ratio (CR) settings. Although numerous methods have been studied to address the aforementioned issue, the majority of them exploit the prior of local smoothness in images, which usually induces the over-smoothing of regions with noticeable structure (i.e., edges and textures). During this task, we developed an innovative end-to-end framework that enables high-fidelity RSIC while retaining sharp edge and texture information. Initially, we put forth an edge-guided adversarial network (EGA-Net) for simultaneously restoring edge structures and generating texture details. Second, we impose an edge fidelity constraint to direct our network to optimize image content and structural information jointly. In addition, to facilitate this task, we have constructed a large-scale RSIC dataset named NWPU-RS-Compression (NWPU-RSC). This dataset contains over 300000 images of 30 categories, all with a fixed resolution of 600 × 600. Finally, a new quantitative metric for full reference image quality that takes into account signal statistics and the characteristics of the human visual system (HVS) has been developed, which helps evaluate reconstructed remote-sensing images more objectively and accurately. Experimental evidence has demonstrated that the EGA-Net surpasses several representative compression approaches regarding quality metrics on the NWPU-RSC, AID, and ISPR Vaihingen datasets. Code, dataset, and more experimental results can be accessed at https: //github.com/Chenxi1510/Remote-sensing-Image-Compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
white完成签到 ,获得积分10
3秒前
3秒前
5秒前
大方的星星完成签到,获得积分10
6秒前
7秒前
碧蓝的之云完成签到 ,获得积分10
8秒前
我是哈哈超人完成签到,获得积分10
8秒前
大大大漂亮完成签到 ,获得积分10
8秒前
10秒前
华仔应助猪猪hero采纳,获得10
10秒前
13秒前
squrreil发布了新的文献求助10
15秒前
FN_09完成签到,获得积分10
17秒前
18秒前
77发布了新的文献求助10
18秒前
Bob发布了新的文献求助10
18秒前
思源应助武愿采纳,获得10
20秒前
23秒前
猪猪hero发布了新的文献求助10
24秒前
25秒前
戴和家完成签到,获得积分10
26秒前
万能图书馆应助squrreil采纳,获得10
28秒前
28秒前
在水一方应助小小鹅采纳,获得10
29秒前
sjr发布了新的文献求助10
30秒前
30秒前
31秒前
科研通AI2S应助77采纳,获得10
32秒前
老天师一巴掌完成签到 ,获得积分10
33秒前
风趣雪卉发布了新的文献求助10
37秒前
37秒前
39秒前
田様应助你看那个蛋采纳,获得10
39秒前
43秒前
wk完成签到,获得积分10
45秒前
自信惋清完成签到,获得积分10
47秒前
戴和家发布了新的文献求助10
49秒前
52秒前
53秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522