Edge-Guided Remote-Sensing Image Compression

计算机科学 有损压缩 GSM演进的增强数据速率 平滑的 计算机视觉 公制(单位) 图像压缩 图像质量 人工智能 忠诚 遥感 图像(数学) 图像处理 地理 电信 工程类 运营管理
作者
Pengfei Han,Bin Zhao,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:9
标识
DOI:10.1109/tgrs.2023.3314012
摘要

Using high-fidelity image compression makes it possible to transmit remote-sensing images in real-time. Nevertheless, existing lossy remote-sensing image compression (RSIC) methods have some inherent potential issues, including blocking and blurring effects, which are particularly problematic in low-compression-ratio (CR) settings. Although numerous methods have been studied to address the aforementioned issue, the majority of them exploit the prior of local smoothness in images, which usually induces the over-smoothing of regions with noticeable structure (i.e., edges and textures). During this task, we developed an innovative end-to-end framework that enables high-fidelity RSIC while retaining sharp edge and texture information. Initially, we put forth an edge-guided adversarial network (EGA-Net) for simultaneously restoring edge structures and generating texture details. Second, we impose an edge fidelity constraint to direct our network to optimize image content and structural information jointly. In addition, to facilitate this task, we have constructed a large-scale RSIC dataset named NWPU-RS-Compression (NWPU-RSC). This dataset contains over 300000 images of 30 categories, all with a fixed resolution of 600 × 600. Finally, a new quantitative metric for full reference image quality that takes into account signal statistics and the characteristics of the human visual system (HVS) has been developed, which helps evaluate reconstructed remote-sensing images more objectively and accurately. Experimental evidence has demonstrated that the EGA-Net surpasses several representative compression approaches regarding quality metrics on the NWPU-RSC, AID, and ISPR Vaihingen datasets. Code, dataset, and more experimental results can be accessed at https: //github.com/Chenxi1510/Remote-sensing-Image-Compression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助彩虹捕手采纳,获得10
1秒前
1秒前
1秒前
1秒前
niania完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
飞翔的霸天哥应助废柴采纳,获得30
2秒前
FashionBoy应助机灵沛萍采纳,获得10
2秒前
Stella应助凯瑞采纳,获得10
2秒前
星辰大海应助可爱绮采纳,获得10
3秒前
斯文败类应助pK采纳,获得10
3秒前
3秒前
3秒前
DG发布了新的文献求助10
4秒前
科研通AI6应助高兴的滑板采纳,获得10
4秒前
David驳回了情怀应助
4秒前
海纳百川发布了新的文献求助10
4秒前
闫博发布了新的文献求助10
4秒前
陌回应助xcchh采纳,获得30
5秒前
贵月发布了新的文献求助10
5秒前
5秒前
zyh发布了新的文献求助10
5秒前
Dream发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
灵波完成签到,获得积分10
6秒前
7秒前
7秒前
su发布了新的文献求助10
7秒前
Ava应助abc采纳,获得10
8秒前
8秒前
hulahula发布了新的文献求助10
8秒前
Canace发布了新的文献求助10
8秒前
云飏发布了新的文献求助10
8秒前
杨晓明发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414