高光谱成像
尾矿
均方误差
反演(地质)
相关系数
多光谱图像
环境科学
偏最小二乘回归
土壤科学
遥感
数学
地质学
统计
化学
构造盆地
物理化学
古生物学
作者
Nannan Yang,Ling Han,Ming Liu
出处
期刊:Heliyon
[Elsevier]
日期:2023-09-01
卷期号:9 (9): e19782-e19782
被引量:2
标识
DOI:10.1016/j.heliyon.2023.e19782
摘要
The exploitation of mineral resources has seriously polluted the environment around mines, notably in terms of heavy metal contamination of tailings pond soil. Hyperspectral remote sensing, as opposed to conventional on-site sampling and laboratory analysis, offers a potent tool for effective monitoring the content of soil heavy metals. Therefore, we investigated the inversion models of heavy metal content in metal tailings area based on measured hyperspectral and multispectral data. Hyperspectral and its transformation, as well as the simulated Landsat8-OLI multispectral were used for model inversion respectively. Stepwise Multiple Linear Regression (SMLR), Partial Least Squares Regression (PLSR) and Back Propagation Neuron Network (BPNN) were established to study the spectral inversion of eight heavy metals (Cu, Cd, Cr, Ni, Pb, Zn, As, and Hg). The direct inversion models were established on the basis of correlation analysis and the adjust coefficient of determination (Adjust_R2) and Root Mean Square Error (RMSE) were used for model evaluation. Then the best combination of spectral transformation and inversion model were explored. The model inversion results suggested that: (1) Hyperspectral transformation can generally improve the model accuracy, especially the second derivative spectral, based on which the training Adjust_R2 of Hg SMLR and PLSR models are as high as 0.795 and 0.802. (2) The BP neural network inversion based on the denoised hyperspectrum demonstrate that both the training and testing Adjust_R2 of Cd, Ni and Hg models are all greater than 0.5, indicating good applicability in practical extrapolation. (3) Both the training and testing Adjust_R2 of Cu and Hg PLSR models based on simulated R_Landsat8-OLI multispectral are greater than 0.5, and Hg has lower RMSE and lager Adjust_R2 with training and testing Adjust_R2 values of 0.833 and 0.553 respectively. (4) Multispectral remote sensing detection and mapping of Hg contamination were realized by the optimal simulation model of Hg. Hence, it is feasible to simulate the multispectral with hyperspectral data for investigating heavy metal contamination.
科研通智能强力驱动
Strongly Powered by AbleSci AI