Fault Detection in Wastewater Treatment Process Using Broad Slow Feature Neural Network With Incremental Learning Ability

计算机科学 水准点(测量) 特征(语言学) 架空(工程) 过程(计算) 故障检测与隔离 人工智能 人工神经网络 断层(地质) 实时计算 机器学习 数据挖掘 哲学 语言学 大地测量学 地震学 地质学 执行机构 地理 操作系统
作者
Peng Chang,Ying Xu,Fanchao Meng,Weili Xiong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4540-4549 被引量:2
标识
DOI:10.1109/tii.2023.3324971
摘要

Developing a fault detection model for the wastewater treatment process that combines satisfactory accuracy with comparatively low time overhead remains an exceedingly formidable endeavor. Fortunately, the broad slow feature neural network (BSFNN) perfectly embodies the dual advantages mentioned above. The BSFNN utilizes both slow feature windows and enhancement windows to extract significant and slowly varying information characterized by different velocities, which facilitates the learning of nonlinear and dynamic features related to superior monitoring accuracy. Another benefit of the BSFNN model is that it continues to retain the efficiency of the broad learning system with regard to time overhead, which is considerably decreased through employing the pseudoinverse strategy to determine network parameters. The operational environment often undergoes nonstationary dynamic changes in actual wastewater treatment processes. Especially in scenarios where higher monitoring accuracy is demanded or the network structure needs online adjustments to real-time update, and yet network adjustments can be time-consuming, the number of node parameters within incremental windows can be flexibly determined by dynamically adding enhancement nodes, which better obviates the necessity of retraining the entire BSFNN system from scratch, thereby allowing for online real-time adjustments to the structure and fault detection accuracy to achieve the desired performance. A case study using benchmark wastewater treatment platforms demonstrates that the suggested method outperforms advanced fault detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助20
刚刚
刚刚
lucky完成签到 ,获得积分20
1秒前
乐乐应助小燕采纳,获得10
2秒前
傲娇的凡旋应助河北大学采纳,获得10
2秒前
6秒前
9秒前
9秒前
爆米花应助dada采纳,获得10
10秒前
ldy完成签到 ,获得积分10
11秒前
student完成签到 ,获得积分10
11秒前
喜悦松完成签到,获得积分10
12秒前
qishui发布了新的文献求助10
15秒前
16秒前
小阳给小阳的求助进行了留言
16秒前
可爱的函函应助Valky采纳,获得10
17秒前
17秒前
111发布了新的文献求助10
17秒前
航航完成签到,获得积分10
18秒前
果汁橡皮糖完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
成中医水硕一枚完成签到,获得积分20
22秒前
22秒前
冷静凌文完成签到,获得积分10
23秒前
Jasper应助化学y采纳,获得10
24秒前
一遐完成签到,获得积分10
25秒前
义气尔安完成签到,获得积分10
25秒前
xixi完成签到,获得积分10
26秒前
鹿lu发布了新的文献求助10
26秒前
26秒前
沙脑发布了新的文献求助10
27秒前
高1123应助言希采纳,获得10
27秒前
28秒前
28秒前
乔qiqiqiqi发布了新的文献求助10
28秒前
静槐完成签到,获得积分10
29秒前
29秒前
传奇3应助Heavenfalling采纳,获得10
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462725
求助须知:如何正确求助?哪些是违规求助? 3056239
关于积分的说明 9051164
捐赠科研通 2745868
什么是DOI,文献DOI怎么找? 1506668
科研通“疑难数据库(出版商)”最低求助积分说明 696188
邀请新用户注册赠送积分活动 695720