MD-GraphFormer: A Model-Driven Graph Transformer for Fast Multi-Contrast MR Imaging

医学影像学 计算机科学 人工智能 计算机视觉
作者
Jiazhen Wang,Yan Yang,Heran Yang,Chunfeng Lian,Zongben Xu,Jian Sun
出处
期刊:IEEE transactions on computational imaging 卷期号:9: 1018-1030 被引量:4
标识
DOI:10.1109/tci.2023.3328281
摘要

In magnetic resonance imaging (MRI), multi-contrast pulse sequences are routinely acquired, providing complementary information for medical diagnosis. Compared with the single-contrast MR image reconstruction, the multi-contrast MR imaging could further accelerate data acquisition and improve reconstruction quality by leveraging the complementary information of multi-contrast MR images. In this paper, we propose a model-driven graph transformer (MD-GraphFormer) for fast multi-contrast MR imaging, which incorporates the physical constraints of MRI and investigates the complementary information among multi-contrast MR images using graph structure and attention mechanism. The MD-GraphFormer consists of graph-attention-based interaction modules (GAB-IM) and multi-contrast data consistency modules (MC-DCM). GAB-IM learns and interacts the features of multi-contrast MR images over the graph with nodes representing MR contrasts. MC-DCM enforces the consistency between the reconstructed multi-contrast MR images and their corresponding measurements in k-space. Extensive experiments are conducted on the collected raw uMR and SMS brain MRI datasets under different sampling patterns and sampling rates. The results demonstrate that the proposed MD-GraphFormer outperforms the previous multi-contrast MRI reconstruction methods in multi-coil imaging settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
超帅的访云完成签到,获得积分10
2秒前
乐乐应助贺兰采纳,获得10
3秒前
哈哈完成签到 ,获得积分10
3秒前
Lucas应助Chenq1nss采纳,获得10
3秒前
4秒前
科研通AI6应助高兴的水卉采纳,获得10
4秒前
5秒前
5秒前
卜谷雪完成签到,获得积分10
6秒前
changping应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Xiaoxiao应助科研通管家采纳,获得10
7秒前
changping应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
成就应助科研通管家采纳,获得10
7秒前
changping应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
wuchun完成签到,获得积分10
7秒前
爆米花应助曹家如采纳,获得10
8秒前
浮游应助fanFu采纳,获得10
8秒前
toffee发布了新的文献求助10
9秒前
10秒前
丘比特应助ttt采纳,获得10
10秒前
烟花应助优秀白曼采纳,获得10
10秒前
Orange应助平常的乘云采纳,获得10
11秒前
FashionBoy应助小陆采纳,获得10
11秒前
熊啾啾发布了新的文献求助10
11秒前
11秒前
雪花发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075152
求助须知:如何正确求助?哪些是违规求助? 4295084
关于积分的说明 13383317
捐赠科研通 4116756
什么是DOI,文献DOI怎么找? 2254446
邀请新用户注册赠送积分活动 1259062
关于科研通互助平台的介绍 1191876