亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ResMorCNN Model: Hyperspectral Images Classification Using Residual-Injection Morphological Features and 3DCNN Layers

高光谱成像 残余物 计算机科学 人工智能 模式识别(心理学) 特征提取 上下文图像分类 数据挖掘 图像(数学) 算法
作者
Mohammad Reza Esmaeili,Dariush Abbasi‐Moghadam,Alireza Sharifi,Aqil Tariq,Qingting Li
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 219-243 被引量:26
标识
DOI:10.1109/jstars.2023.3328389
摘要

Hyperspectral imagery is widely used for analyzing substances and objects, specifically focusing on their classification. The advancement of processing capabilities and the emergence of cloud computing platforms have made deep learning (DL) models increasingly popular for accurately and efficiently hyperspectral images (HSI) classification. In addition, utilizing image-processing techniques that employ specific mathematical operations for feature extraction and noise reduction further improves the precision of HSI classification. This study introduces the ResMorCNN model, which utilizes 3-D convolutional layers and morphology mathematics to extract structural information, shapes, and interregional interactions from HSIs. These features are then incorporated into the model's layers using residual connections. This approach significantly enhances the classification accuracy of datasets with different characteristics. In fact, the proposed model achieves an average accuracy higher than the top-performing DL method in a competition. To evaluate the overall effectiveness of the proposed method, it was tested on four distinct and comprehensive datasets, Indian Pines, Pavia University, Houston University, and Salinas. These datasets were carefully selected, taking into account factors such as scale, dispersion, and sample size. The overall accuracy results obtained for each evaluated dataset were 97.81%, 99.33%, 98.67%, and 99.71%, respectively. This demonstrates an average improvement of 3.37% compared to the results of the best-performing method. The results demonstrate the effectiveness of the proposed ResMorCNN model for various applications that require accurate and efficient classification of HSI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
14秒前
泌尿小周发布了新的文献求助30
19秒前
三块石头发布了新的文献求助10
20秒前
zhanlang完成签到 ,获得积分10
44秒前
萝卜丁完成签到 ,获得积分0
1分钟前
小兔子发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助零零零采纳,获得10
2分钟前
大个应助咔咔采纳,获得10
2分钟前
2分钟前
零零零发布了新的文献求助10
2分钟前
3分钟前
crane发布了新的文献求助10
3分钟前
4分钟前
noss发布了新的文献求助10
4分钟前
小兔子发布了新的文献求助10
4分钟前
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
18746005898完成签到 ,获得积分10
4分钟前
ttt发布了新的文献求助10
4分钟前
4分钟前
HOPKINSON发布了新的文献求助10
4分钟前
Jasper应助HOPKINSON采纳,获得10
5分钟前
5分钟前
al完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得200
6分钟前
打打应助科研通管家采纳,获得10
6分钟前
慕青应助科研通管家采纳,获得10
6分钟前
顾矜应助kuhai采纳,获得20
7分钟前
George发布了新的文献求助10
7分钟前
ttt完成签到,获得积分10
7分钟前
ttt发布了新的文献求助10
7分钟前
情怀应助师爷采纳,获得10
8分钟前
Bin_Liu发布了新的文献求助10
8分钟前
李健应助如烈火如止水采纳,获得10
8分钟前
8分钟前
江夏秋枫发布了新的文献求助10
8分钟前
活力的寻云完成签到 ,获得积分10
8分钟前
123完成签到,获得积分10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773679
求助须知:如何正确求助?哪些是违规求助? 3319144
关于积分的说明 10193371
捐赠科研通 3033807
什么是DOI,文献DOI怎么找? 1664727
邀请新用户注册赠送积分活动 796293
科研通“疑难数据库(出版商)”最低求助积分说明 757416