Texture-Semantic Collaboration Network for ORSI Salient Object Detection

计算机科学 编码器 突出 特征(语言学) 人工智能 自编码 对象(语法) 模式识别(心理学) 计算机视觉 纹理(宇宙学) 语义特征 构造(python库) 职位(财务) 图像(数学) 人工神经网络 哲学 财务 操作系统 经济 程序设计语言 语言学
作者
Gongyang Li,Zhen Bai,Zhi Li
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsii.2023.3333436
摘要

Salient object detection (SOD) in optical remote sensing images (ORSIs) has become increasingly popular recently. Due to the characteristics of ORSIs, ORSI-SOD is full of challenges, such as multiple objects, small objects, low illuminations, and irregular shapes. To address these challenges, we propose a concise yet effective Texture-Semantic Collaboration Network (TSCNet) to explore the collaboration of texture cues and semantic cues for ORSI-SOD. Specifically, TSCNet is based on the generic encoder-decoder structure. In addition to the encoder and decoder, TSCNet includes a vital Texture-Semantic Collaboration Module (TSCM), which performs valuable feature modulation and interaction on basic features extracted from the encoder. The main idea of our TSCM is to make full use of the texture features at the lowest level and the semantic features at the highest level to achieve the expression enhancement of salient regions on features. In the TSCM, we first enhance the position of potential salient regions using semantic features. Then, we render and restore the object details using the texture features. Meanwhile, we also perceive regions of various scales, and construct interactions between different regions. Thanks to the perfect combination of TSCM and generic structure, our TSCNet can take care of both the position and details of salient objects, effectively handling various scenes. Extensive experiments on three datasets demonstrate that our TSCNet achieves competitive performance compared to 14 state-of-the-art methods. The code and results of our method are available at https://github.com/MathLee/TSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
论英雄完成签到,获得积分10
1秒前
2秒前
5秒前
6秒前
kRAY发布了新的文献求助10
6秒前
6秒前
duktig完成签到 ,获得积分10
6秒前
港岛妹妹发布了新的文献求助10
7秒前
上官若男应助稳重向南采纳,获得10
8秒前
celine发布了新的文献求助10
8秒前
dawnstar发布了新的文献求助10
10秒前
10秒前
safsafdfasf发布了新的文献求助10
11秒前
dwx0529发布了新的文献求助30
11秒前
ding应助deityxq采纳,获得10
12秒前
浮游应助风趣黑裤采纳,获得10
12秒前
12秒前
12秒前
13秒前
14秒前
Hello应助徐梦曦采纳,获得10
14秒前
稳重向南完成签到,获得积分10
15秒前
32429606完成签到 ,获得积分10
16秒前
慕青应助活泼的行云采纳,获得10
17秒前
celine完成签到,获得积分20
17秒前
白羊发布了新的文献求助10
17秒前
17秒前
dwx0529完成签到,获得积分10
18秒前
20秒前
唐泽雪穗发布了新的文献求助30
20秒前
20秒前
21秒前
21秒前
22秒前
一只呆呆完成签到 ,获得积分10
23秒前
jenningseastera应助冷傲迎梦采纳,获得10
24秒前
鸣笛应助WBH36323采纳,获得30
24秒前
柠木完成签到 ,获得积分10
24秒前
黄yellow发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538689
求助须知:如何正确求助?哪些是违规求助? 3973052
关于积分的说明 12307737
捐赠科研通 3639863
什么是DOI,文献DOI怎么找? 2004161
邀请新用户注册赠送积分活动 1039575
科研通“疑难数据库(出版商)”最低求助积分说明 928856