Spatiotemporal Graph Attention Network for Soft Sensor Modeling of Suspended Magnetization Roasting Process

计算机科学 加权 过程(计算) 数据挖掘 变量(数学) 图形 数据建模 人工智能 理论计算机科学 数据库 数学 医学 数学分析 放射科 操作系统
作者
Ying Yang,Jia Yuan Yu,Huiyue Yu,Xiaozhi Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2023.3334374
摘要

Data-driven soft sensor modeling is a significant research area that aims to extract reliable and comprehensive features from massive data in production processes, thereby realizing the practical value of data for guiding actual production. However, existing research primarily focuses on extracting features in a single dimension, overlooking the multidimensional dependencies among equipment in the production process. To address this issue, this article proposes a spatiotemporal graph attention network (ST-GAT). The network constructs a spatial directed graph model to capture the connectivity among multiple equipment while considering the temporal variations of equipment data and their impact on the target variable. ST-GAT performs spatiotemporal feature extraction on both the equipment themselves and the equipment connected to them, aiming to represent the data of each production equipment more comprehensively. Furthermore, to effectively utilize equipment features relevant to the target prediction, an adaptive weighting module (AW) is introduced to evaluate the importance of each equipment feature for the target variable, thereby improving the utilization of important features. In addition, to overcome the limitations of traditional single activation functions, a variable activation function (VAF) is proposed, which adaptively selects activation functions to enhance the network’s autonomous learning capability. Finally, experiments are conducted on a real dataset from the suspended magnetization roasting (SMR) production process. Through multiple modeling experiments and comprehensive performance evaluations, ST-GAT achieves the best prediction results on the SMR process dataset, demonstrating the crucial role of modeling spatiotemporal dependencies among equipment and further validating the effectiveness of ST-GAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttdwx发布了新的文献求助10
1秒前
韩林岑发布了新的文献求助10
1秒前
马里奥完成签到,获得积分10
1秒前
奇异喵发布了新的文献求助10
1秒前
hailey53发布了新的文献求助10
2秒前
dong应助怡然的向南采纳,获得30
3秒前
4秒前
5秒前
5秒前
JamesPei应助梦梦采纳,获得10
6秒前
JamesPei应助xy采纳,获得10
6秒前
喵喵喵完成签到,获得积分10
7秒前
顾矜应助我不吃胡萝卜采纳,获得10
7秒前
小康学弟完成签到 ,获得积分10
8秒前
架子猫完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
韩林岑完成签到,获得积分10
9秒前
sujustin333发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
高挑的寒松完成签到,获得积分10
11秒前
11秒前
阿M啊啊完成签到,获得积分10
12秒前
奇异喵完成签到,获得积分10
12秒前
hui完成签到,获得积分20
12秒前
SSS水鱼发布了新的文献求助30
14秒前
顺shun完成签到 ,获得积分10
14秒前
情怀应助huayi采纳,获得10
15秒前
djiwisksk66应助南佳采纳,获得10
15秒前
16秒前
Albertxkcj发布了新的文献求助10
16秒前
hui发布了新的文献求助10
16秒前
无花果应助奇异喵采纳,获得10
17秒前
17秒前
Gudeguy完成签到 ,获得积分10
19秒前
20秒前
20秒前
点点完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836