已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatiotemporal Graph Attention Network for Soft Sensor Modeling of Suspended Magnetization Roasting Process

计算机科学 加权 过程(计算) 数据挖掘 变量(数学) 图形 数据建模 人工智能 理论计算机科学 数据库 数学 医学 操作系统 放射科 数学分析
作者
Ying Yang,Jia Yuan Yu,Huiyue Yu,Xiaozhi Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2023.3334374
摘要

Data-driven soft sensor modeling is a significant research area that aims to extract reliable and comprehensive features from massive data in production processes, thereby realizing the practical value of data for guiding actual production. However, existing research primarily focuses on extracting features in a single dimension, overlooking the multidimensional dependencies among equipment in the production process. To address this issue, this article proposes a spatiotemporal graph attention network (ST-GAT). The network constructs a spatial directed graph model to capture the connectivity among multiple equipment while considering the temporal variations of equipment data and their impact on the target variable. ST-GAT performs spatiotemporal feature extraction on both the equipment themselves and the equipment connected to them, aiming to represent the data of each production equipment more comprehensively. Furthermore, to effectively utilize equipment features relevant to the target prediction, an adaptive weighting module (AW) is introduced to evaluate the importance of each equipment feature for the target variable, thereby improving the utilization of important features. In addition, to overcome the limitations of traditional single activation functions, a variable activation function (VAF) is proposed, which adaptively selects activation functions to enhance the network’s autonomous learning capability. Finally, experiments are conducted on a real dataset from the suspended magnetization roasting (SMR) production process. Through multiple modeling experiments and comprehensive performance evaluations, ST-GAT achieves the best prediction results on the SMR process dataset, demonstrating the crucial role of modeling spatiotemporal dependencies among equipment and further validating the effectiveness of ST-GAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助关关采纳,获得10
刚刚
伶俐的威发布了新的文献求助30
1秒前
duke完成签到 ,获得积分10
4秒前
111111111完成签到,获得积分10
4秒前
YCQ发布了新的文献求助10
4秒前
桐桐应助YCQ采纳,获得10
8秒前
10秒前
无花果应助流萤采纳,获得10
10秒前
12秒前
伶俐的威完成签到,获得积分10
13秒前
方班术发布了新的文献求助10
16秒前
铁臂阿童木完成签到 ,获得积分10
21秒前
28秒前
Soleil发布了新的文献求助10
29秒前
30秒前
venkash完成签到,获得积分10
31秒前
明眸完成签到 ,获得积分10
32秒前
VDC发布了新的文献求助30
33秒前
joy完成签到,获得积分10
33秒前
35秒前
关关发布了新的文献求助10
40秒前
41秒前
Soleil完成签到,获得积分10
41秒前
大家好完成签到 ,获得积分10
47秒前
张航完成签到,获得积分10
48秒前
51秒前
圆彰七大完成签到 ,获得积分10
52秒前
iNk应助张航采纳,获得20
53秒前
Won_nut完成签到,获得积分20
55秒前
56秒前
蒋莹萱完成签到 ,获得积分10
57秒前
59秒前
槑槑完成签到,获得积分10
1分钟前
1分钟前
卡卡发布了新的文献求助10
1分钟前
佰斯特威应助孙秋颖采纳,获得10
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zw发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539397
求助须知:如何正确求助?哪些是违规求助? 3973545
关于积分的说明 12309084
捐赠科研通 3640493
什么是DOI,文献DOI怎么找? 2004530
邀请新用户注册赠送积分活动 1039921
科研通“疑难数据库(出版商)”最低求助积分说明 929108