Spatiotemporal Graph Attention Network for Soft Sensor Modeling of Suspended Magnetization Roasting Process

计算机科学 加权 过程(计算) 数据挖掘 变量(数学) 图形 数据建模 人工智能 理论计算机科学 数据库 数学 医学 操作系统 放射科 数学分析
作者
Ying Yang,Jia Yuan Yu,Huiyue Yu,Xiaozhi Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2023.3334374
摘要

Data-driven soft sensor modeling is a significant research area that aims to extract reliable and comprehensive features from massive data in production processes, thereby realizing the practical value of data for guiding actual production. However, existing research primarily focuses on extracting features in a single dimension, overlooking the multidimensional dependencies among equipment in the production process. To address this issue, this article proposes a spatiotemporal graph attention network (ST-GAT). The network constructs a spatial directed graph model to capture the connectivity among multiple equipment while considering the temporal variations of equipment data and their impact on the target variable. ST-GAT performs spatiotemporal feature extraction on both the equipment themselves and the equipment connected to them, aiming to represent the data of each production equipment more comprehensively. Furthermore, to effectively utilize equipment features relevant to the target prediction, an adaptive weighting module (AW) is introduced to evaluate the importance of each equipment feature for the target variable, thereby improving the utilization of important features. In addition, to overcome the limitations of traditional single activation functions, a variable activation function (VAF) is proposed, which adaptively selects activation functions to enhance the network’s autonomous learning capability. Finally, experiments are conducted on a real dataset from the suspended magnetization roasting (SMR) production process. Through multiple modeling experiments and comprehensive performance evaluations, ST-GAT achieves the best prediction results on the SMR process dataset, demonstrating the crucial role of modeling spatiotemporal dependencies among equipment and further validating the effectiveness of ST-GAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田雪完成签到,获得积分10
刚刚
Owen应助liwenhao采纳,获得10
刚刚
彭于晏应助小林要发sci采纳,获得10
1秒前
chen发布了新的文献求助10
1秒前
1秒前
Ryan123完成签到,获得积分10
1秒前
2秒前
whisper发布了新的文献求助10
2秒前
zyyyyyyyy完成签到,获得积分10
2秒前
yx完成签到,获得积分10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
3秒前
aurora完成签到,获得积分10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
peir完成签到,获得积分10
3秒前
Kiki完成签到 ,获得积分10
3秒前
凶狠的雅霜完成签到,获得积分10
3秒前
镘淳发布了新的文献求助10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
快乐滑板应助科研通管家采纳,获得10
3秒前
ghkjl完成签到,获得积分10
3秒前
快乐滑板应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
快乐滑板应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
QiongYin_123完成签到 ,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676