Spatiotemporal Graph Attention Network for Soft Sensor Modeling of Suspended Magnetization Roasting Process

计算机科学 加权 过程(计算) 数据挖掘 变量(数学) 图形 数据建模 人工智能 理论计算机科学 数据库 数学 医学 操作系统 放射科 数学分析
作者
Ying Yang,Jia Yuan Yu,Huiyue Yu,Xiaozhi Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2023.3334374
摘要

Data-driven soft sensor modeling is a significant research area that aims to extract reliable and comprehensive features from massive data in production processes, thereby realizing the practical value of data for guiding actual production. However, existing research primarily focuses on extracting features in a single dimension, overlooking the multidimensional dependencies among equipment in the production process. To address this issue, this article proposes a spatiotemporal graph attention network (ST-GAT). The network constructs a spatial directed graph model to capture the connectivity among multiple equipment while considering the temporal variations of equipment data and their impact on the target variable. ST-GAT performs spatiotemporal feature extraction on both the equipment themselves and the equipment connected to them, aiming to represent the data of each production equipment more comprehensively. Furthermore, to effectively utilize equipment features relevant to the target prediction, an adaptive weighting module (AW) is introduced to evaluate the importance of each equipment feature for the target variable, thereby improving the utilization of important features. In addition, to overcome the limitations of traditional single activation functions, a variable activation function (VAF) is proposed, which adaptively selects activation functions to enhance the network’s autonomous learning capability. Finally, experiments are conducted on a real dataset from the suspended magnetization roasting (SMR) production process. Through multiple modeling experiments and comprehensive performance evaluations, ST-GAT achieves the best prediction results on the SMR process dataset, demonstrating the crucial role of modeling spatiotemporal dependencies among equipment and further validating the effectiveness of ST-GAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Coai517完成签到 ,获得积分10
刚刚
刚刚
小甘发布了新的文献求助10
1秒前
TG_FY完成签到,获得积分10
1秒前
yuan完成签到,获得积分10
2秒前
橙子完成签到,获得积分10
2秒前
谦让之云完成签到 ,获得积分10
2秒前
2秒前
愉快书琴完成签到,获得积分10
3秒前
3秒前
SYLH应助WangZhen采纳,获得10
4秒前
福尔摩云完成签到,获得积分10
5秒前
无辜的秀完成签到,获得积分10
6秒前
Charles完成签到,获得积分10
8秒前
hao发布了新的文献求助10
8秒前
小嘎发布了新的文献求助10
8秒前
ABin完成签到,获得积分10
10秒前
Jasper应助qixiaoqi采纳,获得10
10秒前
FangyingTang完成签到 ,获得积分10
11秒前
金枪鱼子完成签到,获得积分10
11秒前
theyoung发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
赘婿应助liu采纳,获得10
12秒前
小马甲应助清仔采纳,获得10
12秒前
12秒前
luoyue完成签到,获得积分10
12秒前
yuan发布了新的文献求助10
13秒前
科研通AI5应助JR采纳,获得30
13秒前
14秒前
海阔天空发布了新的文献求助10
15秒前
SYLH应助WangZhen采纳,获得10
15秒前
票子发布了新的文献求助10
15秒前
苹果柜子完成签到 ,获得积分10
15秒前
活泼的平灵完成签到,获得积分10
16秒前
愤怒的咖啡完成签到,获得积分10
16秒前
愉快的银耳汤完成签到,获得积分10
17秒前
又又完成签到,获得积分10
18秒前
ypres完成签到 ,获得积分10
19秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066