Spatiotemporal Graph Attention Network for Soft Sensor Modeling of Suspended Magnetization Roasting Process

计算机科学 加权 过程(计算) 数据挖掘 变量(数学) 图形 数据建模 人工智能 理论计算机科学 数据库 数学 医学 操作系统 放射科 数学分析
作者
Ying Yang,Jia Yuan Yu,Huiyue Yu,Xiaozhi Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2023.3334374
摘要

Data-driven soft sensor modeling is a significant research area that aims to extract reliable and comprehensive features from massive data in production processes, thereby realizing the practical value of data for guiding actual production. However, existing research primarily focuses on extracting features in a single dimension, overlooking the multidimensional dependencies among equipment in the production process. To address this issue, this article proposes a spatiotemporal graph attention network (ST-GAT). The network constructs a spatial directed graph model to capture the connectivity among multiple equipment while considering the temporal variations of equipment data and their impact on the target variable. ST-GAT performs spatiotemporal feature extraction on both the equipment themselves and the equipment connected to them, aiming to represent the data of each production equipment more comprehensively. Furthermore, to effectively utilize equipment features relevant to the target prediction, an adaptive weighting module (AW) is introduced to evaluate the importance of each equipment feature for the target variable, thereby improving the utilization of important features. In addition, to overcome the limitations of traditional single activation functions, a variable activation function (VAF) is proposed, which adaptively selects activation functions to enhance the network’s autonomous learning capability. Finally, experiments are conducted on a real dataset from the suspended magnetization roasting (SMR) production process. Through multiple modeling experiments and comprehensive performance evaluations, ST-GAT achieves the best prediction results on the SMR process dataset, demonstrating the crucial role of modeling spatiotemporal dependencies among equipment and further validating the effectiveness of ST-GAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助呆萌菲音采纳,获得10
1秒前
Bruce完成签到,获得积分10
1秒前
MX001完成签到,获得积分10
1秒前
2秒前
大个应助普鲁卡因采纳,获得10
2秒前
Hello应助nezhaalicia采纳,获得10
2秒前
2秒前
苏silence发布了新的文献求助10
3秒前
4秒前
肌肉猛男完成签到,获得积分10
4秒前
领导范儿应助memorise采纳,获得30
4秒前
SciGPT应助龙江游侠采纳,获得10
4秒前
火星上的西牛完成签到,获得积分10
4秒前
qwdqwd完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
明理的蜗牛完成签到,获得积分10
6秒前
pharrah完成签到,获得积分10
6秒前
Qianyun完成签到,获得积分10
6秒前
6秒前
吴淑明完成签到,获得积分10
7秒前
clara完成签到,获得积分10
7秒前
喵喵发布了新的文献求助10
7秒前
7秒前
kosmos完成签到,获得积分10
7秒前
里苏特完成签到,获得积分10
7秒前
7秒前
qll完成签到,获得积分10
8秒前
读书娃儿完成签到,获得积分10
8秒前
8秒前
xue发布了新的文献求助10
8秒前
8秒前
艾席文完成签到,获得积分10
9秒前
陈开月完成签到,获得积分10
9秒前
胡图图完成签到,获得积分10
9秒前
田様应助Adzuki0812采纳,获得10
9秒前
曲线发布了新的文献求助10
9秒前
9秒前
lore完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017