Spatiotemporal Graph Attention Network for Soft Sensor Modeling of Suspended Magnetization Roasting Process

计算机科学 加权 过程(计算) 数据挖掘 变量(数学) 图形 数据建模 人工智能 理论计算机科学 数据库 数学 医学 操作系统 放射科 数学分析
作者
Ying Yang,Jia Yuan Yu,Huiyue Yu,Xiaozhi Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2023.3334374
摘要

Data-driven soft sensor modeling is a significant research area that aims to extract reliable and comprehensive features from massive data in production processes, thereby realizing the practical value of data for guiding actual production. However, existing research primarily focuses on extracting features in a single dimension, overlooking the multidimensional dependencies among equipment in the production process. To address this issue, this article proposes a spatiotemporal graph attention network (ST-GAT). The network constructs a spatial directed graph model to capture the connectivity among multiple equipment while considering the temporal variations of equipment data and their impact on the target variable. ST-GAT performs spatiotemporal feature extraction on both the equipment themselves and the equipment connected to them, aiming to represent the data of each production equipment more comprehensively. Furthermore, to effectively utilize equipment features relevant to the target prediction, an adaptive weighting module (AW) is introduced to evaluate the importance of each equipment feature for the target variable, thereby improving the utilization of important features. In addition, to overcome the limitations of traditional single activation functions, a variable activation function (VAF) is proposed, which adaptively selects activation functions to enhance the network’s autonomous learning capability. Finally, experiments are conducted on a real dataset from the suspended magnetization roasting (SMR) production process. Through multiple modeling experiments and comprehensive performance evaluations, ST-GAT achieves the best prediction results on the SMR process dataset, demonstrating the crucial role of modeling spatiotemporal dependencies among equipment and further validating the effectiveness of ST-GAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QXR完成签到,获得积分10
刚刚
豆dou完成签到,获得积分10
刚刚
Dddd发布了新的文献求助10
刚刚
HCl完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
Hollen完成签到 ,获得积分10
4秒前
慕青应助学术蠕虫采纳,获得10
5秒前
5秒前
叶子发布了新的文献求助10
6秒前
orangel完成签到,获得积分10
7秒前
半壶月色半边天完成签到 ,获得积分10
8秒前
tmpstlml发布了新的文献求助10
8秒前
9秒前
9秒前
不安饼干完成签到 ,获得积分10
11秒前
活泼的飞鸟完成签到,获得积分10
11秒前
12秒前
xuyun发布了新的文献求助10
12秒前
12秒前
zzcres完成签到,获得积分10
14秒前
eeeee完成签到 ,获得积分10
14秒前
乐观德地完成签到,获得积分10
15秒前
大个应助yf_zhu采纳,获得10
15秒前
llk发布了新的文献求助10
16秒前
一只大肥猫完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
18秒前
18秒前
科研通AI5应助GGG采纳,获得10
19秒前
19秒前
21秒前
Ann发布了新的文献求助20
21秒前
21秒前
buno应助duxinyue采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808