已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatiotemporal Graph Attention Network for Soft Sensor Modeling of Suspended Magnetization Roasting Process

计算机科学 加权 过程(计算) 数据挖掘 变量(数学) 图形 数据建模 人工智能 理论计算机科学 数据库 数学 医学 操作系统 放射科 数学分析
作者
Ying Yang,Jia Yuan Yu,Huiyue Yu,Xiaozhi Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15
标识
DOI:10.1109/tim.2023.3334374
摘要

Data-driven soft sensor modeling is a significant research area that aims to extract reliable and comprehensive features from massive data in production processes, thereby realizing the practical value of data for guiding actual production. However, existing research primarily focuses on extracting features in a single dimension, overlooking the multidimensional dependencies among equipment in the production process. To address this issue, this article proposes a spatiotemporal graph attention network (ST-GAT). The network constructs a spatial directed graph model to capture the connectivity among multiple equipment while considering the temporal variations of equipment data and their impact on the target variable. ST-GAT performs spatiotemporal feature extraction on both the equipment themselves and the equipment connected to them, aiming to represent the data of each production equipment more comprehensively. Furthermore, to effectively utilize equipment features relevant to the target prediction, an adaptive weighting module (AW) is introduced to evaluate the importance of each equipment feature for the target variable, thereby improving the utilization of important features. In addition, to overcome the limitations of traditional single activation functions, a variable activation function (VAF) is proposed, which adaptively selects activation functions to enhance the network’s autonomous learning capability. Finally, experiments are conducted on a real dataset from the suspended magnetization roasting (SMR) production process. Through multiple modeling experiments and comprehensive performance evaluations, ST-GAT achieves the best prediction results on the SMR process dataset, demonstrating the crucial role of modeling spatiotemporal dependencies among equipment and further validating the effectiveness of ST-GAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
接两块钱应助一一采纳,获得10
1秒前
帅气绮露完成签到,获得积分10
2秒前
2秒前
windom完成签到,获得积分10
2秒前
mage完成签到,获得积分10
3秒前
haha完成签到 ,获得积分10
4秒前
帅气绮露发布了新的文献求助10
5秒前
lhs发布了新的文献求助30
5秒前
曲奇饼干发布了新的文献求助10
6秒前
7秒前
我是老大应助yier采纳,获得10
7秒前
SciGPT应助淡淡梦容采纳,获得30
8秒前
CodeCraft应助hotdx采纳,获得10
10秒前
Orange应助jhw采纳,获得10
10秒前
11秒前
11秒前
13秒前
顾矜应助森森森采纳,获得10
15秒前
坞屿完成签到,获得积分20
15秒前
jhw完成签到,获得积分10
16秒前
17秒前
几道完成签到,获得积分10
18秒前
杜大帅发布了新的文献求助30
18秒前
文艺的从筠完成签到,获得积分10
19秒前
20秒前
21秒前
初夏发布了新的文献求助10
22秒前
23秒前
科研通AI6.1应助爹爹采纳,获得10
23秒前
25秒前
fancy发布了新的文献求助25
26秒前
29秒前
酷波er应助RC_Wang采纳,获得10
30秒前
fei发布了新的文献求助10
30秒前
小白发布了新的文献求助10
31秒前
31秒前
33秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770