Development and validation of machine-learning models for the difficulty of retroperitoneal laparoscopic adrenalectomy based on radiomics

接收机工作特性 机器学习 人工智能 学习曲线 预测建模 计算机科学 交叉验证 无线电技术 Python(编程语言) 医学 数据挖掘 医学物理学 操作系统
作者
Shiwei Sun,Wei Yao,Yue Wang,Yue Peng,Fuyu Guo,Xiaoqian Deng,Yangang Zhang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fendo.2023.1265790
摘要

Objective The aim is to construct machine learning (ML) prediction models for the difficulty of retroperitoneal laparoscopic adrenalectomy (RPLA) based on clinical and radiomic characteristics and to validate the models. Methods Patients who had undergone RPLA at Shanxi Bethune Hospital between August 2014 and December 2020 were retrospectively gathered. They were then randomly split into a training set and a validation set, maintaining a ratio of 7:3. The model was constructed using the training set and validated using the validation set. Furthermore, a total of 117 patients were gathered between January and December 2021 to form a prospective set for validation. Radiomic features were extracted by drawing the region of interest using the 3D slicer image computing platform and Python. Key features were selected through LASSO, and the radiomics score (Rad-score) was calculated. Various ML models were constructed by combining Rad-score with clinical characteristics. The optimal models were selected based on precision, recall, the area under the curve, F1 score, calibration curve, receiver operating characteristic curve, and decision curve analysis in the training, validation, and prospective sets. Shapley Additive exPlanations (SHAP) was used to demonstrate the impact of each variable in the respective models. Results After comparing the performance of 7 ML models in the training, validation, and prospective sets, it was found that the RF model had a more stable predictive performance, while xGBoost can significantly benefit patients. According to SHAP, the variable importance of the two models is similar, and both can reflect that the Rad-score has the most significant impact. At the same time, clinical characteristics such as hemoglobin, age, body mass index, gender, and diabetes mellitus also influenced the difficulty. Conclusion This study constructed ML models for predicting the difficulty of RPLA by combining clinical and radiomic characteristics. The models can help surgeons evaluate surgical difficulty, reduce risks, and improve patient benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助明亮无颜采纳,获得10
刚刚
小二郎应助尺素寸心采纳,获得10
刚刚
顾矜应助滕擎采纳,获得10
刚刚
1秒前
suan完成签到,获得积分10
1秒前
大胆的钢笔完成签到,获得积分10
2秒前
2秒前
所所应助眯眯眼的世界采纳,获得10
2秒前
笑笑丶不爱笑完成签到,获得积分10
2秒前
3秒前
Diyaer8008发布了新的文献求助10
3秒前
Philthee完成签到,获得积分10
3秒前
岁岁完成签到 ,获得积分10
5秒前
星辰大海应助老迟的新瑶采纳,获得10
5秒前
CipherSage应助picapica668采纳,获得10
6秒前
xuxiaoyan发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
SYLH应助obaica采纳,获得10
7秒前
CodeCraft应助还单身的绮梅采纳,获得10
7秒前
练习者发布了新的文献求助10
8秒前
无所谓应助Mary采纳,获得10
8秒前
Hi完成签到,获得积分10
8秒前
小蓝完成签到,获得积分10
9秒前
浩仔完成签到,获得积分10
9秒前
隐形曼青应助bluefire采纳,获得10
9秒前
9秒前
10秒前
10秒前
妥妥酱发布了新的文献求助10
11秒前
Salut发布了新的文献求助10
11秒前
11秒前
尺素寸心发布了新的文献求助10
11秒前
12秒前
13秒前
苏苏发布了新的文献求助10
13秒前
艳子完成签到,获得积分10
13秒前
qtmxxx完成签到,获得积分10
14秒前
李彦发布了新的文献求助10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489951
求助须知:如何正确求助?哪些是违规求助? 3077035
关于积分的说明 9147332
捐赠科研通 2769213
什么是DOI,文献DOI怎么找? 1519635
邀请新用户注册赠送积分活动 704109
科研通“疑难数据库(出版商)”最低求助积分说明 702098