A new solution framework for time-dependent reliability-based design optimization

数学优化 概率逻辑 可靠性(半导体) 计算机科学 离散化 约束(计算机辅助设计) 最优化问题 数学 几何学 量子力学 物理 数学分析 人工智能 功率(物理)
作者
Meide Yang,Dequan Zhang,Chao Jiang,Fang Wang,Xu Han
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:418: 116475-116475
标识
DOI:10.1016/j.cma.2023.116475
摘要

Time-dependent reliability-based design optimization (TRBDO) has attracted intensive research attentions in recent years by virtue of its unique ability to allow consideration of dynamic uncertainties caused by stochastic processes and material property degradation. However, existing TRBDO methods are generally too intricate to be practically applicable for practical engineering application. On top of that, extremely high computational cost for complex TRBDO problems further hinders its practicability. To facilitate smooth implementation via enhancing computational efficiency in solving TRBDO problems, this study proposes an innovative and efficient solution framework. The strategy is that time-dependent performance function in each probabilistic constraint is discretized into a series of instantaneous performance functions to transform the original TRBDO problem into a RBDO problem. The reliability of each probabilistic constraint in the transformed RBDO problem is then considered under extreme value condition. With engagement of the first-order reliability method, a double-loop method is proposed to transform the RBDO problem is transformed into two different triple-loop time-independent RBDO problem. However, the issue of expensive computational cost still persists due to the triple-loop structure and identification of temporal variables under extreme value condition. To this gap, a decoupled strategy is adopted to resolve the triple-loop structure into a series of cycles of double-loop reliability analyses and deterministic optimization. Two numerical examples and three engineering applications are employed to demonstrate the supreme computational performance of the currently proposed solution framework. Results show that the proposed framework is capable of achieving a reliable optimal design at a fast convergence speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻百川应助虚心的静枫采纳,获得10
刚刚
ccepted1122发布了新的文献求助30
刚刚
慕青应助正直海之采纳,获得10
刚刚
张锐斌发布了新的文献求助10
刚刚
刚刚
顾矜应助兴奋的雪糕采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助xny采纳,获得10
1秒前
xiaojiahuo发布了新的文献求助10
1秒前
wxxz发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
包容春天发布了新的文献求助10
2秒前
3秒前
ding应助神勇绮烟采纳,获得10
3秒前
AyraN完成签到,获得积分10
3秒前
哈哈哈发布了新的文献求助10
3秒前
3秒前
hhh完成签到,获得积分10
3秒前
Zzz发布了新的文献求助20
4秒前
gudujian870928完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助ira采纳,获得10
4秒前
一念之间发布了新的文献求助10
4秒前
君叁叁发布了新的文献求助10
5秒前
Akun发布了新的文献求助20
5秒前
5秒前
5秒前
123lura完成签到,获得积分10
5秒前
所所应助科研人采纳,获得10
6秒前
Ava应助lily采纳,获得10
6秒前
天涯过客完成签到,获得积分10
6秒前
阿松大发布了新的文献求助10
6秒前
情怀应助张锐斌采纳,获得10
7秒前
7秒前
正直海之完成签到,获得积分10
7秒前
FashionBoy应助c14在读文献采纳,获得10
7秒前
领导范儿应助LXH采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017