A new solution framework for time-dependent reliability-based design optimization

数学优化 概率逻辑 可靠性(半导体) 计算机科学 离散化 约束(计算机辅助设计) 最优化问题 数学 几何学 量子力学 物理 数学分析 人工智能 功率(物理)
作者
Meide Yang,Dequan Zhang,Chao Jiang,Fang Wang,Xu Han
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:418: 116475-116475
标识
DOI:10.1016/j.cma.2023.116475
摘要

Time-dependent reliability-based design optimization (TRBDO) has attracted intensive research attentions in recent years by virtue of its unique ability to allow consideration of dynamic uncertainties caused by stochastic processes and material property degradation. However, existing TRBDO methods are generally too intricate to be practically applicable for practical engineering application. On top of that, extremely high computational cost for complex TRBDO problems further hinders its practicability. To facilitate smooth implementation via enhancing computational efficiency in solving TRBDO problems, this study proposes an innovative and efficient solution framework. The strategy is that time-dependent performance function in each probabilistic constraint is discretized into a series of instantaneous performance functions to transform the original TRBDO problem into a RBDO problem. The reliability of each probabilistic constraint in the transformed RBDO problem is then considered under extreme value condition. With engagement of the first-order reliability method, a double-loop method is proposed to transform the RBDO problem is transformed into two different triple-loop time-independent RBDO problem. However, the issue of expensive computational cost still persists due to the triple-loop structure and identification of temporal variables under extreme value condition. To this gap, a decoupled strategy is adopted to resolve the triple-loop structure into a series of cycles of double-loop reliability analyses and deterministic optimization. Two numerical examples and three engineering applications are employed to demonstrate the supreme computational performance of the currently proposed solution framework. Results show that the proposed framework is capable of achieving a reliable optimal design at a fast convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bie123发布了新的文献求助10
1秒前
汉堡包应助谭东东采纳,获得30
2秒前
happy完成签到,获得积分10
2秒前
3秒前
4秒前
英姑应助蒸蒸日上采纳,获得10
4秒前
丘比特应助执行正义采纳,获得10
4秒前
银玥完成签到,获得积分10
6秒前
丘比特应助机灵凌雪采纳,获得10
6秒前
阿喵发布了新的文献求助10
7秒前
搜集达人应助默listening采纳,获得10
8秒前
坚定的匕完成签到,获得积分20
8秒前
nc发布了新的文献求助10
9秒前
今后应助卡卡采纳,获得30
9秒前
嘿休休发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
Jim完成签到 ,获得积分10
12秒前
广陵发布了新的文献求助10
14秒前
涨涨涨发布了新的文献求助10
15秒前
17秒前
Mark完成签到 ,获得积分10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
Bo完成签到,获得积分10
17秒前
大个应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
迷人不凡发布了新的文献求助10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
阿绵完成签到,获得积分10
19秒前
默listening发布了新的文献求助10
20秒前
20秒前
毛毛完成签到,获得积分10
21秒前
lll完成签到 ,获得积分10
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742