A new solution framework for time-dependent reliability-based design optimization

数学优化 概率逻辑 可靠性(半导体) 计算机科学 离散化 约束(计算机辅助设计) 最优化问题 数学 几何学 量子力学 物理 数学分析 人工智能 功率(物理)
作者
Meide Yang,Dequan Zhang,Chao Jiang,Fang Wang,Xu Han
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:418: 116475-116475
标识
DOI:10.1016/j.cma.2023.116475
摘要

Time-dependent reliability-based design optimization (TRBDO) has attracted intensive research attentions in recent years by virtue of its unique ability to allow consideration of dynamic uncertainties caused by stochastic processes and material property degradation. However, existing TRBDO methods are generally too intricate to be practically applicable for practical engineering application. On top of that, extremely high computational cost for complex TRBDO problems further hinders its practicability. To facilitate smooth implementation via enhancing computational efficiency in solving TRBDO problems, this study proposes an innovative and efficient solution framework. The strategy is that time-dependent performance function in each probabilistic constraint is discretized into a series of instantaneous performance functions to transform the original TRBDO problem into a RBDO problem. The reliability of each probabilistic constraint in the transformed RBDO problem is then considered under extreme value condition. With engagement of the first-order reliability method, a double-loop method is proposed to transform the RBDO problem is transformed into two different triple-loop time-independent RBDO problem. However, the issue of expensive computational cost still persists due to the triple-loop structure and identification of temporal variables under extreme value condition. To this gap, a decoupled strategy is adopted to resolve the triple-loop structure into a series of cycles of double-loop reliability analyses and deterministic optimization. Two numerical examples and three engineering applications are employed to demonstrate the supreme computational performance of the currently proposed solution framework. Results show that the proposed framework is capable of achieving a reliable optimal design at a fast convergence speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助vivi采纳,获得50
1秒前
999完成签到,获得积分10
1秒前
狗头233发布了新的文献求助10
2秒前
喝可乐的萝卜兔完成签到 ,获得积分10
2秒前
浩气长存完成签到 ,获得积分10
4秒前
在水一方应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
香蕉诗蕊应助科研通管家采纳,获得10
7秒前
老福贵儿应助科研通管家采纳,获得10
7秒前
小白应助科研通管家采纳,获得10
7秒前
mutong应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
iVANPENNY应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
777完成签到,获得积分10
8秒前
大个应助科研通管家采纳,获得10
8秒前
smottom应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得30
8秒前
iVANPENNY应助科研通管家采纳,获得10
8秒前
xz应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
有重名的应助Two-Capitals采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
香蕉诗蕊应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
帅气善斓应助科研通管家采纳,获得10
9秒前
老福贵儿应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
smottom应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
帅气善斓应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
帅气善斓应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688566
关于积分的说明 14854693
捐赠科研通 4693840
什么是DOI,文献DOI怎么找? 2540863
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806