A new solution framework for time-dependent reliability-based design optimization

数学优化 概率逻辑 可靠性(半导体) 计算机科学 离散化 约束(计算机辅助设计) 最优化问题 数学 几何学 量子力学 物理 数学分析 人工智能 功率(物理)
作者
Meide Yang,Dequan Zhang,Chao Jiang,Fang Wang,Xu Han
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:418: 116475-116475
标识
DOI:10.1016/j.cma.2023.116475
摘要

Time-dependent reliability-based design optimization (TRBDO) has attracted intensive research attentions in recent years by virtue of its unique ability to allow consideration of dynamic uncertainties caused by stochastic processes and material property degradation. However, existing TRBDO methods are generally too intricate to be practically applicable for practical engineering application. On top of that, extremely high computational cost for complex TRBDO problems further hinders its practicability. To facilitate smooth implementation via enhancing computational efficiency in solving TRBDO problems, this study proposes an innovative and efficient solution framework. The strategy is that time-dependent performance function in each probabilistic constraint is discretized into a series of instantaneous performance functions to transform the original TRBDO problem into a RBDO problem. The reliability of each probabilistic constraint in the transformed RBDO problem is then considered under extreme value condition. With engagement of the first-order reliability method, a double-loop method is proposed to transform the RBDO problem is transformed into two different triple-loop time-independent RBDO problem. However, the issue of expensive computational cost still persists due to the triple-loop structure and identification of temporal variables under extreme value condition. To this gap, a decoupled strategy is adopted to resolve the triple-loop structure into a series of cycles of double-loop reliability analyses and deterministic optimization. Two numerical examples and three engineering applications are employed to demonstrate the supreme computational performance of the currently proposed solution framework. Results show that the proposed framework is capable of achieving a reliable optimal design at a fast convergence speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助dian采纳,获得10
刚刚
2秒前
2秒前
qingfengnai完成签到,获得积分10
2秒前
3秒前
李震完成签到,获得积分10
3秒前
3秒前
3秒前
Akim应助Alan采纳,获得10
3秒前
证明发布了新的文献求助10
3秒前
FRANKFANG完成签到,获得积分10
4秒前
4秒前
Akim应助呵呜哎辉采纳,获得10
4秒前
4秒前
合适的平安完成签到,获得积分10
5秒前
没有昵称完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
就是我发布了新的文献求助10
6秒前
酷波er应助Nano采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
田哲完成签到 ,获得积分10
6秒前
胖箭鱼发布了新的文献求助10
8秒前
8秒前
hearz发布了新的文献求助10
9秒前
帅气航空发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
屋顶橙子味完成签到 ,获得积分10
9秒前
doctorshg完成签到,获得积分10
9秒前
王艺霖发布了新的文献求助10
11秒前
充电宝应助宇文半邪采纳,获得10
11秒前
晴Amber完成签到 ,获得积分10
11秒前
11秒前
JZ发布了新的文献求助10
12秒前
prisoner完成签到,获得积分20
12秒前
大个应助WZ采纳,获得10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233