A statistical deformation model-based data augmentation method for volumetric medical image segmentation

轮廓 人工智能 分割 计算机科学 平滑的 计算机视觉 预处理器 医学影像学 计算机图形学(图像)
作者
Wenfeng He,Chulong Zhang,Jingjing Dai,Lin Liu,Tangsheng Wang,Xuan Liu,Yuming Jiang,Na Li,Jing Xiong,Lei Wang,Yaoqin Xie,Xiaokun Liang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 102984-102984 被引量:19
标识
DOI:10.1016/j.media.2023.102984
摘要

The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苹果紊发布了新的文献求助20
1秒前
1秒前
生蚝发布了新的文献求助10
1秒前
1秒前
3秒前
mimi完成签到,获得积分10
3秒前
啵啵完成签到 ,获得积分10
3秒前
希望天下0贩的0应助豆包采纳,获得10
3秒前
思源应助冷静采纳,获得10
4秒前
科研通AI2S应助小丸子采纳,获得10
5秒前
小文完成签到,获得积分10
5秒前
wuhu完成签到 ,获得积分10
5秒前
5秒前
5秒前
桐桐应助陈先生采纳,获得10
5秒前
ala完成签到,获得积分10
6秒前
wuwuwuwuwuwu发布了新的文献求助10
6秒前
救了个命发布了新的文献求助10
6秒前
Vanilla应助轻松的盼兰采纳,获得20
6秒前
Mm完成签到,获得积分10
6秒前
6秒前
Zyy完成签到 ,获得积分10
7秒前
7秒前
绿绿发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
浮云发布了新的文献求助20
12秒前
科研通AI6应助all采纳,获得10
12秒前
科芒发布了新的文献求助10
12秒前
12秒前
13秒前
妮妮发布了新的文献求助10
13秒前
科研通AI2S应助为阿达采纳,获得10
13秒前
不一发布了新的文献求助10
13秒前
14秒前
15秒前
希望天下0贩的0应助小鱼采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942443
求助须知:如何正确求助?哪些是违规求助? 4208117
关于积分的说明 13080731
捐赠科研通 3987172
什么是DOI,文献DOI怎么找? 2182916
邀请新用户注册赠送积分活动 1198583
关于科研通互助平台的介绍 1110931