A statistical deformation model-based data augmentation method for volumetric medical image segmentation

轮廓 人工智能 分割 计算机科学 平滑的 计算机视觉 预处理器 医学影像学 计算机图形学(图像)
作者
Wenfeng He,Chulong Zhang,Jingjing Dai,Lin Liu,Tangsheng Wang,Xuan Liu,Yuming Jiang,Na Li,Jing Xiong,Lei Wang,Yaoqin Xie,Xiaokun Liang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 102984-102984 被引量:13
标识
DOI:10.1016/j.media.2023.102984
摘要

The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷酷的傲之完成签到,获得积分20
1秒前
2秒前
2秒前
淡水鱼完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
秋石完成签到,获得积分10
3秒前
3秒前
HHH发布了新的文献求助10
4秒前
4秒前
周十八发布了新的文献求助10
4秒前
李猫猫完成签到,获得积分10
4秒前
LY发布了新的文献求助10
4秒前
5秒前
SHAO应助教授王采纳,获得50
6秒前
7秒前
7秒前
张wx_100发布了新的文献求助10
8秒前
8秒前
Rubby应助Liu采纳,获得10
8秒前
8秒前
李爱国应助月下荷花采纳,获得10
9秒前
9秒前
橘子完成签到,获得积分10
10秒前
Benny发布了新的文献求助10
10秒前
momo发布了新的文献求助10
10秒前
隐形曼青应助火锅采纳,获得10
11秒前
正直纸鹤完成签到,获得积分10
11秒前
11秒前
zyyyyyu发布了新的文献求助10
11秒前
收拾收拾应助安静的缘分采纳,获得10
12秒前
李猫猫发布了新的文献求助10
12秒前
干净的夜蓉完成签到,获得积分10
12秒前
共享精神应助开放诗筠采纳,获得10
13秒前
拿云发布了新的文献求助10
13秒前
14秒前
14秒前
乐观依云完成签到,获得积分20
14秒前
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092