A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations

空气动力学 计算流体力学 参数统计 高超音速 人工智能 计算机科学 航空航天工程 点云 点(几何) 物理 机械 几何学 数学 工程类 统计
作者
Yang Shen,Wei Huang,Zhenguo Wang,Danyan Xu,Chaoyang Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (10) 被引量:2
标识
DOI:10.1063/5.0172437
摘要

In this paper, a deep learning framework is proposed for predicting aerodynamic pressure distributions in general three-dimensional configurations. Based on the PointNet++ structure, the proposed framework extracts shape features based on the geometric representation of point cloud, outputs pressure coefficients corresponding to locations, and is able to accept inputs of point clouds with different resolutions. By PointNet++, we mean that local and global features of three-dimensional configurations could be effectively extracted through a multi-level feature extraction structure. A parametric approach is utilized to generate 2000 different space shuttle three-dimensional shapes, and their flows at the hypersonic speed are solved by computational fluid dynamics (CFD) as a dataset to support the training of the deep learning. Within the dataset, accurate predictions of pressure and aerodynamic forces are demonstrated for 400 unseen testing shapes. Out of the dataset, geometries that are tested for generalizability include slender, waverider, spaceplane, Apollo capsule, lifting body, and rocket. Remarkably, the framework is capable of predicting pressure distributions and aerodynamic forces for the unseen, independently designed geometries of various types in near-real-time and near-CFD accuracy, proving its excellent applicability to general three-dimensional configurations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头发甩甩完成签到,获得积分20
刚刚
刚刚
AlyCE发布了新的文献求助10
1秒前
zy发布了新的文献求助30
1秒前
hl完成签到,获得积分10
1秒前
Billy应助pdf采纳,获得30
2秒前
魏默雷完成签到 ,获得积分10
2秒前
2秒前
Ivychao完成签到,获得积分10
2秒前
3秒前
隐形曼青应助干秋白采纳,获得10
3秒前
3秒前
3秒前
罗梦芬完成签到,获得积分10
3秒前
SciGPT应助冷艳咖啡豆采纳,获得10
4秒前
领导范儿应助我是sci大王采纳,获得10
4秒前
rikka发布了新的文献求助10
4秒前
小曦仔发布了新的文献求助20
4秒前
pan完成签到,获得积分10
6秒前
7秒前
Owen应助小黄采纳,获得10
7秒前
柠檬发布了新的文献求助10
7秒前
AlyCE完成签到,获得积分10
7秒前
大模型应助刺猬采纳,获得10
8秒前
jiaozhiping发布了新的文献求助10
8秒前
Mizoresuki发布了新的文献求助30
8秒前
舒心傲易发布了新的文献求助10
8秒前
kong完成签到 ,获得积分10
8秒前
rgaerva应助xiaodq采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
不许焦绿o完成签到,获得积分10
12秒前
安康放假哦哎关注了科研通微信公众号
12秒前
biye完成签到,获得积分10
13秒前
新秀完成签到,获得积分10
13秒前
Singularity发布了新的文献求助10
13秒前
whatever应助Nanami_ii采纳,获得20
14秒前
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227367
求助须知:如何正确求助?哪些是违规求助? 2875446
关于积分的说明 8191043
捐赠科研通 2542695
什么是DOI,文献DOI怎么找? 1372977
科研通“疑难数据库(出版商)”最低求助积分说明 646618
邀请新用户注册赠送积分活动 621040