GBMIA: Gradient-based Membership Inference Attack in Federated Learning

计算机科学 推论 正确性 机器学习 人工智能 模型攻击 公制(单位) 过程(计算) 数据挖掘 计算机安全 算法 工程类 运营管理 操作系统
作者
Xiaodong Wang,Naiyu Wang,Longfei Wu,Zhitao Guan,Xiaojiang Du,Mohsen Guizani
标识
DOI:10.1109/icc45041.2023.10279702
摘要

Membership inference attack (MIA) has been proved to pose a serious threat to federated learning (FL). However, most of the existing membership inference attacks against FL rely on the specific attack models built from the target model behaviors, which make the attacks costly and complicated. In addition, directly adopting the inference attacks that are originally designed for machine learning models into the federated scenarios can lead to poor performance. We propose GBMIA, an attack model-free membership inference method based on gradient. We take full advantage of the federated learning process by observing the target model's behaviors after gradient ascent tuning. And we combine prediction correctness and the gradient norm-based metric for membership inference. The proposed GBMIA can be conducted by both global and local attackers. We conduct experimental evaluations on three real-world datasets to demonstrate that GBMIA can achieve a high attack accuracy. We further apply the arbitration mechanism to increase the effectiveness of GBMIA which can lead to an attack accuracy close to 1 on all three datasets. We also conduct experiments to substantiate that clients going offline and the overlap of clients' training sets have great effect on the membership leakage in FL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪比巴卜完成签到,获得积分10
刚刚
2秒前
爱撒娇的大白菜真实的钥匙完成签到 ,获得积分10
3秒前
123发布了新的文献求助10
4秒前
幽凡发布了新的文献求助10
4秒前
秋水发布了新的文献求助10
4秒前
4秒前
5秒前
星辰大海应助ju00采纳,获得10
5秒前
善学以致用应助ju00采纳,获得10
5秒前
顾矜应助ju00采纳,获得10
5秒前
6666应助ju00采纳,获得10
5秒前
文艺的洋葱完成签到,获得积分10
5秒前
所所应助ju00采纳,获得50
5秒前
科研通AI6应助ju00采纳,获得30
5秒前
5秒前
5秒前
6秒前
默默的如豹完成签到,获得积分10
6秒前
6秒前
共享精神应助粗暴的嫣娆采纳,获得10
6秒前
Wind应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
繁星长明应助科研通管家采纳,获得10
8秒前
magiczhu完成签到,获得积分10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Wind应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得20
9秒前
田様应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
ljyimu发布了新的文献求助10
9秒前
李栗子完成签到,获得积分10
10秒前
李健应助宫年采纳,获得10
10秒前
科研通AI6应助感谢采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578642
求助须知:如何正确求助?哪些是违规求助? 4663442
关于积分的说明 14746667
捐赠科研通 4604316
什么是DOI,文献DOI怎么找? 2526915
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465795