光热治疗
透明质酸
自愈水凝胶
乳腺癌
阿霉素
转移性乳腺癌
伤口愈合
体内
癌症研究
医学
化学
壳聚糖
肿瘤微环境
癌症
药理学
化疗
免疫学
材料科学
外科
内科学
生物
高分子化学
生物化学
纳米技术
生物技术
解剖
作者
Jing Chen,Xinyi Zhang,Jinshen Zhang,Zhaoxia Wang,Guilan Zhu,Ming Geng,Jinmiao Zhu,Yajun Chen,Wei Wang,Youcui Xu
标识
DOI:10.1016/j.jconrel.2023.11.024
摘要
Metastatic recurrence and postoperative wound infection are two major challenges for breast cancer patients. In this study, a multifunctional responsive hydrogel system was developed for synergistic reoxygenation and chemo/photothermal therapy in metastatic breast cancer and wound infection. The hydrogel system was obtained by cross-linking Prussian blue-modified N-carboxyethyl chitosan (PBCEC) and oxidized sodium alginate using the amino and aldehyde groups on the polysaccharides, resulting in the formation of responsive dynamic imine bonds. Conditioned stimulation (e.g., acid microenvironment) enabled the controlled swelling of hydrogels as well as subsequent slow release of loaded doxorubicin (DOX). Additionally, this hydrogel system decomposed endogenous reactive oxygen species into oxygen to relieve the hypoxic tumor microenvironment and promote the healing of infected-wounds. Both in vitro and in vivo experiments demonstrated the synergistic reoxygenation and chemo/photothermal effects of the PB/DOX hydrogel system against metastatic breast cancer and its recurrence, as well as postoperative wound infection. Thus, the combination of reoxygenation and chemo/photothermal therapy represents a novel strategy for treating and preventing tumor recurrence and associated wound infection.
科研通智能强力驱动
Strongly Powered by AbleSci AI